InterPro domain: IPR002320

General Information

  • Identifier IPR002320
  • Description Threonine-tRNA ligase, class IIa

Abstract

The aminoacyl-tRNA synthetases (also known as aminoacyl-tRNA ligases) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction [ 1 , 2 ]. These proteins differ widely in size and oligomeric state, and have limited sequence homology [ 3 ]. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric [ 4 ]. Class II aminoacyl-tRNA synthetases share an anti-parallel beta-sheet fold flanked by alpha-helices [ 5 ], and are mostly dimeric or multimeric, containing at least three conserved regions [ 6 , 7 , 8 ]. However, tRNA binding involves an alpha-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, valine, and some lysine synthetases (non-eukaryotic group) belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, phenylalanine, proline, serine, threonine, and some lysine synthetases (non-archaeal group), belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c [ 9 ].

Threonine-tRNA ligase (also known as Threonyl-tRNA synthetase) ( 6.1.1.3 ) exists as a monomer and belongs to class IIa. The enzyme fromEscherichia coli represses the translation of its own mRNA. The crystal structure of the complex between tRNA(Thr) and ThrRS show structural features that reveal novel strategies for providing specificity in tRNA selection. These include an amino-terminal domain containing a novel protein fold that makes minor groove contacts with the tRNA acceptor stem. The enzyme induces a large deformation of the anticodon loop, resulting in an interaction between two adjacent anticodon bases, which accounts for their prominent role in tRNA identity and translational regulation. A zinc ion found in the active site is implicated in amino acid recognition/discrimination [ 10 ]. The zinc ion may act to ensure that only amino acids that possess a hydroxyl group attached to the beta-position are activated [ 11 ].


1. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202-36
2. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8, 1363-72
3. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203-6
4. The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. Structure 8, 197-208
5. Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32, 8758-71
6. The aminoacyl-tRNA synthetase family: modules at work. Bioessays 15, 675-87
7. Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. Trends Biochem. Sci. 16, 1-3
8. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19, 3489-98
9. Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689-710
10. The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97, 371-81
11. Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat. Struct. Biol. 7, 461-5

Species distribution

Gene table

Loading...