InterPro domain: IPR019942

General Information

  • Identifier IPR019942
  • Description LL-diaminopimelate aminotransferase/aminotransferase ALD1
  • Number of genes 326
  • Gene duplication stats Loading...
  • Associated GO terms GO:0008483  

Abstract

This entry includes LL-diaminopimelate aminotransferase DapL from bacteria and aminotransferase ALD1 from plants. DapL is involved in the synthesis of meso-diaminopimelate (m-DAP or DL-DAP), required for both lysine and peptidoglycan biosynthesis. This enzyme catalyzes the direct conversion of tetrahydrodipicolinate to LL-diaminopimelate, a reaction that requires three enzymes in E.coli. It is also able to use meso-diaminopimelate, cystathionine, lysine or ornithine as substrates [ 1 ]. ALD1 is involved in the biosynthesis of pipecolate (Pip), a metabolite that orchestrates defense amplification, positive regulation of SA biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR [ 2 , 3 ].

Two lysine biosynthesis pathways evolved separately in organisms, the diaminopimelic acid (DAP) and aminoadipic acid (AAA) pathways. The DAP pathway synthesizes L-lysine from aspartate and pyruvate, and diaminopimelic acid is an intermediate. This pathway is utilised by most bacteria, some archaea, some fungi, some algae, and plants. The AAA pathway synthesizes L-lysine from alpha-ketoglutarate and acetyl coenzyme A (acetyl-CoA), and alpha-aminoadipic acid is an intermediate. This pathway is utilised by most fungi, some algae, the bacterium Thermus thermophilus, and probably some archaea, such as Sulfolobus, Thermoproteus, and Pyrococcus. No organism is known to possess both pathways [ 4 ].

There four known variations of the DAP pathway in bacteria: the succinylase, acetylase, aminotransferase, and dehydrogenase pathways. These pathways share the steps converting L-aspartate to L-2,3,4,5- tetrahydrodipicolinate (THDPA), but the subsequent steps leading to the production of meso-diaminopimelate, the immediate precursor of L-lysine, are different [ 5 ].

  • The succinylase pathway acylates THDPA with succinyl-CoA to generate N-succinyl-LL-2-amino-6-ketopimelate and forms meso-DAP by subsequent transamination, desuccinylation, and epimerization. This pathway is utilised by proteobacteria and many firmicutes and actinobacteria.
  • The acetylase pathway is analogous to the succinylase pathway but uses N-acetyl intermediates. This pathway is limited to certain Bacillus species, in which the corresponding genes have not been identified.
  • The aminotransferase pathway converts THDPA directly to LL-DAP by diaminopimelate aminotransferase (DapL) without acylation. This pathway is shared by cyanobacteria, Chlamydia, the archaeon Methanothermobacter thermautotrophicus, and the plant Arabidopsis thaliana.
  • The dehydrogenase pathway forms meso-DAP directly from THDPA, NADPH, and NH4 _ by using diaminopimelate dehydrogenase (Ddh). This pathway is utilised by some Bacillus and Brevibacterium species and Corynebacterium glutamicum.

Most bacteria use only one of the four variants, although certain bacteria, such as C. glutamicum and Bacillus macerans, possess both the succinylase and dehydrogenase pathways.


1. L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc. Natl. Acad. Sci. U.S.A. 103, 17909-14
2. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24, 5123-41
3. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. Plant Cell 28, 2603-2615
4. Methanococci use the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis. J. Bacteriol. 192, 3304-10

Species distribution

Gene table

Loading...