InterPro domain: IPR015088
General Information
- Identifier IPR015088
- Description Zinc finger, DNA-directed DNA polymerase, family B, alpha
- Number of genes 127
- Gene duplication stats Loading...
- Associated GO terms GO:0003887 GO:0006260
Abstract
Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [ 1 , 2 , 3 , 4 , 5 ]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [ 6 ]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.
The DNA Polymerase alpha zinc finger domain adopts an alpha-helix-like structure, followed by three turns, all of which involve proline. The resulting motif is a helix-turn-helix motif, in contrast to other zinc finger domains, which show anti-parallel sheet and helix conformation. Zinc binding occurs due to the presence of four cysteine residues positioned to bind the metal centre in a tetrahedral coordination geometry. The function of this domain is uncertain: it has been proposed that the zinc finger motif may be an essential part of the DNA binding domain. It is involved in providing a structural platform for interactions with both oligonucleotide/oligosaccharide (OB) and phosphoesterase domains of the B subunit [ 7 , 8 , 9 ].
1. Zinc finger peptides for the regulation of gene expression. J. Mol. Biol. 293, 215-8
2. Multiple modes of RNA recognition by zinc finger proteins. Curr. Opin. Struct. Biol. 15, 367-73
3. Zinc finger proteins: getting a grip on RNA. Curr. Opin. Struct. Biol. 15, 94-8
4. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem. Sci. 32, 63-70
5. Zinc fingers--folds for many occasions. IUBMB Life 54, 351-5
6. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11, 39-46
7. Nuclear magnetic resonance structures of the zinc finger domain of human DNA polymerase-alpha. Biochim. Biophys. Acta 1651, 163-71
8. Crystal structure of the human Polϵ B-subunit in complex with the C-terminal domain of the catalytic subunit. J Biol Chem 292, 15717-15730
9. 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J. 28, 1978-87