InterPro domain: IPR002489
General Information
- Identifier IPR002489
- Description Glutamate synthase, alpha subunit, C-terminal
- Number of genes 304
- Gene duplication stats Loading...
- Associated GO terms GO:0016491
Abstract
Glutamate synthase (GltS) is a complex iron-sulphur flavoprotein that catalyses the reductive synthesis of L-glutamate from 2-oxoglutarate and L-glutamine via intramolecular channelling of ammonia, a reaction in the bacterial, yeast and plant pathways for ammonia assimilation [ 1 ]. GltS is a multifunctional enzyme that functions through three distinct active centres carrying out multiple reaction steps: L-glutamine hydrolysis, conversion of 2-oxoglutarate into L-glutamate, and electron uptake from an electron donor. The active centres are synchronised to avoid the wasteful consumption of L-glutamine [ 2 ]. There are three classes of GltS, which share many functional properties: bacterial NADPH-dependent GltS, ferredoxin-dependent GltS from photosynthetic cells, and NAD(P)H-dependent GltS from yeast, fungi and lower animals.
The dimeric alpha subunits each consist of four domains: N-terminal amidotransferase domain, the central domain, the FMN binding domain and the C-terminal domain. The C-terminal domain forms a right-handed beta-helix that comprises seven helical turns [ 3 ]. Each helical turn has a sharp bend that is associated with a repeated sequence motif consisting of G-XX-G-XXX-G. This domain does not contain any residues directly involved in catalysis, but has a crucial structural role.
This domain is also found in proteins such as subunit C of formylmethanofuran dehydrogenase, which catalyses the first step in methane formation from carbon dioxide in methanogenic archaea. There are two isoenzymes of formylmethanofuran dehydrogenase: a tungsten-containing isoenzyme (FwdC) and a molybdenum-containing isoenzyme (FmdC). The tungsten isoenzyme is constitutively transcribed, whereas transcription of the molybdenum operon is induced by molybdate [ 3 ].
1. Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. Structure 8, 1299-308
2. Structural studies on the synchronization of catalytic centers in glutamate synthase. J. Biol. Chem. 277, 24579-83
3. The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Arch. Microbiol. 170, 389-93