The membrane-bound NAC transcription factor ANAC013 is a regulator of mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis

Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidates for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify transcriptional regulators of MRR. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, a cis-regulatory element, the mitochondrial dysfunction motif (MDM) was found that is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain containing NAC transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers an increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.

De Clercq, I., Vermeirssen, V., Van Aken, O., Vandepoele, K., Murcha, M., Law, S., Inzé, A., Ng, S., Ivanova, A., Rombaut, D., Van de Cotte, B., Jaspers, P., Van de Peer, Y., Kangasjarvi, J., Whelan, J., Van Breusegem, F. (2013) The membrane-bound NAC transcription factor ANAC013 is a regulator of mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. The Plant Cell 25(9):3472-90.









Contact:
VIB / UGent
Bioinformatics & Evolutionary Genomics
Technologiepark 927
B-9052 Gent
BELGIUM
+32 (0) 9 33 13807 (phone)
+32 (0) 9 33 13809 (fax)

Don't hesitate to contact the in case of problems with the website!