Phylogeny and Identification of Enterococcus Species Using atpA Gene Sequences.

The relatedness among 91 Enterococcus strains representing all validly described species was investigated by comparing a 1,102-bp fragment of atpA, the gene encoding the alpha subunit of ATP synthase. The relationships observed were in agreement with the phylogeny inferred from 16S rRNA gene sequence analysis. However, atpA gene sequences were much more discriminatory than 16S rRNA for species differentiation. All species were differentiated on the basis of atpA sequences with, at a maximum, 92% similarity. Six members of the Enterococcus faecium species group (E. faecium, E. hirae, E. durans, E. villorum, E. mundtii, and E. ratti) showed > 99% 16S rRNA gene sequence similarity, but the highest value of atpA gene sequence similarity was only 89.9%. The intraspecies atpA sequence similarities for all species except E. faecium strains varied from 98.6 to 100%; the E. faecium strains had a lower atpA sequence similarity of 96.3%. Our data clearly show that atpA provides an alternative tool for the phylogenetic study and identification of enterococci.

Naser, S., Thompson, F.L., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenwerck, I., Thompson, C. C., Vancanneyt, M., Swings, J. (2005) Phylogeny and Identification of Enterococcus Species Using atpA Gene Sequences. J. Clin. Micorbiol 43(5):2224-30.









Contact:
VIB / UGent
Bioinformatics & Evolutionary Genomics
Technologiepark 927
B-9052 Gent
BELGIUM
+32 (0) 9 33 13807 (phone)
+32 (0) 9 33 13809 (fax)

Don't hesitate to contact the in case of problems with the website!

You are visiting an outdated page of the BEG/Van de Peer Lab site.

Not all pages have been ported, so these archived pages are still available.

Redirect to the new website?