Inference of Transcriptional Networks in Arabidopsis through Conserved Noncoding Sequence Analysis

Transcriptional regulation plays an important role in establishing gene expression profiles during development or in response to (a)biotic stimuli. Transcription factor binding sites (TFBSs) are the functional elements that determine transcriptional activity, and the identification of individual TFBS in genome sequences is a major goal to inferring regulatory networks. We have developed a phylogenetic footprinting approach for the identification of conserved noncoding sequences (CNSs) across 12 dicot plants. Whereas both alignment and non-alignment-based techniques were applied to identify functional motifs in a multispecies context, our method accounts for incomplete motif conservation as well as high sequence divergence between related species. We identified 69,361 footprints associated with 17,895 genes. Through the integration of known TFBS obtained from the literature and experimental studies, we used the CNSs to compile a gene regulatory network in Arabidopsis thaliana containing 40,758 interactions, of which two-thirds act through binding events located in DNase I hypersensitive sites. This network shows significant enrichment toward in vivo targets of known regulators, and its overall quality was confirmed using five different biological validation metrics. Finally, through the integration of detailed expression and function information, we demonstrate how static CNSs can be converted into condition-dependent regulatory networks, offering opportunities for regulatory gene annotation.

* Van de Velde, J., * Heyndrickx, KS., Vandepoele, K. (2014) Inference of Transcriptional Networks in Arabidopsis through Conserved Noncoding Sequence Analysis. The Plant Cell 26(7):2729-45. *contributed equally









Contact:
VIB / UGent
Bioinformatics & Evolutionary Genomics
Technologiepark 927
B-9052 Gent
BELGIUM
+32 (0) 9 33 13807 (phone)
+32 (0) 9 33 13809 (fax)

Don't hesitate to contact the in case of problems with the website!

You are visiting an outdated page of the BEG/Van de Peer Lab site.

Not all pages have been ported, so these archived pages are still available.

Redirect to the new website?