Multiplicon view: 1 (Experiment Id: 1)   top

The Multiplicon view displays the aligned gene strings of a set of homologous segments.

Multiplicon Information

Multiplicon Id #Species #Segments #Anchorpoints Profile Length
1 2 2 2728 4749

Loading...please wait

Gene Information

Gene Family Information

Options

Draw mode Segment ordering Species

This multiplicon is a lower level multiplicon with child multiplicons, indicating that there are multiplicons with more colinear segments in the same genomic region.
To explore the child multiplicons, view the multiplicon in the table below.

Multiplicon Id #Species #Segments #Anchorpoints Profile Length
2 3 3 1025 2290
4866 3 3 914 2225
8856 3 3 771 2362
9050 3 3 706 1573
9089 3 3 614 1187
9095 3 3 595 1075
9098 3 3 580 1146
9106 3 3 467 1012
9110 3 3 422 1495
9139 3 3 418 1007
9144 3 3 396 799
9148 3 3 374 1197
9150 3 3 328 703
9153 3 3 323 712
9155 3 3 283 916
9159 3 3 214 666
9160 3 3 171 590
9203 3 3 138 666
9207 3 3 136 490
9258 3 3 131 373
9261 3 3 130 272
9265 3 3 122 711
9269 3 3 116 713
9273 3 3 96 358
9335 3 3 93 255
9347 3 3 88 157
9348 3 3 86 378
9349 3 3 78 358
9375 2 3 78 479
9377 3 3 73 258
9378 3 3 71 220
9380 2 3 69 394
9381 3 3 68 140
9382 3 3 67 447
9415 3 3 64 395
9419 3 3 64 390
9420 3 3 63 239
9449 3 3 63 348
9456 3 3 62 196
9462 3 3 62 346
9463 3 3 60 419
9464 3 3 59 114
9465 3 3 56 181
9469 3 3 56 298
9473 3 3 55 316
9481 2 3 52 293
9482 2 3 50 357
9483 3 3 49 298
9487 3 3 47 284
9488 3 3 46 244
9499 3 3 44 191
9502 3 3 44 285
9505 3 3 43 229
9512 3 3 41 274
9514 3 3 40 203
9517 3 3 40 215
9519 3 3 40 267
9520 3 3 38 249
9523 3 3 37 241
9524 3 3 36 149
9544 3 3 35 69
9545 2 3 35 194
9548 3 3 35 281
9549 3 3 34 154
9551 2 3 34 189
9552 3 3 34 203
9553 3 3 33 128
9554 3 3 33 211
9558 3 3 33 235
9559 3 3 32 194
9584 2 3 32 174
9586 3 3 32 138
9587 3 3 32 143
9600 3 3 32 191
9608 3 3 31 153
9610 3 3 29 60
9611 3 3 29 165
9632 3 3 29 173
9634 3 3 29 178
9636 3 3 29 193
9637 3 3 29 185
9638 3 3 28 93
9639 2 3 28 181
9640 3 3 27 44
9641 3 3 27 141
9646 3 3 27 171
9648 2 3 27 181
9649 3 3 26 140
9650 3 3 26 143
9654 3 3 26 182
9656 3 3 25 69
9657 3 3 25 117
9658 3 3 25 119
9660 3 3 25 183
9661 3 3 24 109
9663 3 3 24 108
9664 3 3 24 108
9665 3 3 24 181
9666 3 3 23 67
9667 3 3 23 131
9672 3 3 22 121
9678 3 3 22 93
9679 3 3 22 153
9682 3 3 22 152
9683 3 3 22 166
9684 3 3 21 103
9685 3 3 21 96
9686 3 3 21 79
9687 3 3 21 98
9689 3 3 21 137
9690 3 3 20 107
9691 3 3 20 107
9692 3 3 20 150
9693 3 3 20 174
9694 3 3 20 163
9697 3 3 20 139
9699 3 3 19 67
9700 3 3 19 78
9703 3 3 19 86
9704 3 3 19 85
9707 2 3 19 123
9708 3 3 19 150
9710 3 3 19 137
9711 3 3 18 101
9713 3 3 18 119
9715 3 3 18 88
9716 3 3 18 101
9719 3 3 17 36
9720 3 3 17 106
9723 3 3 17 80
9724 3 3 17 134
9729 3 3 16 35
9730 3 3 16 90
9731 3 3 16 95
9735 3 3 16 89
9738 3 3 16 116
9739 3 3 16 104
9741 3 3 15 40
9742 3 3 15 52
9743 3 3 15 51
9744 3 3 15 88
9746 3 3 15 92
9748 3 3 15 127
9749 3 3 15 90
9750 3 3 15 122
9752 3 3 15 130
9753 3 3 15 152
9754 3 3 14 28
9755 3 3 14 92
9757 3 3 14 80
9758 3 3 14 94
9760 3 3 14 77
9761 3 3 14 82
9763 3 3 14 96
9764 3 3 14 141
9765 3 3 14 112
9766 3 3 14 106
9767 3 3 13 56
9769 3 3 13 62
9776 3 3 13 59
9777 3 3 13 65
9778 3 3 13 82
9779 3 3 13 92
9780 3 3 13 90
9781 3 3 13 83
9782 3 3 13 108
9783 3 3 13 142
9784 3 3 13 110
9785 3 3 13 99
9786 3 3 12 24
9787 3 3 12 27
9788 3 3 12 57
9790 3 3 12 33
9791 3 3 12 43
9794 3 3 12 59
9795 3 3 12 58
9800 3 3 12 92
9807 3 3 12 67
9810 2 3 12 103
9816 3 3 12 80
9817 3 3 12 73
9818 3 3 12 87
9819 3 3 12 110
9820 3 3 12 95
9822 3 3 12 195
9824 3 3 12 101
9826 3 3 12 121
9827 3 3 12 87
9828 3 3 12 84
9829 3 3 12 131
9830 3 3 11 29
9831 3 3 11 44
9838 3 3 11 59
9839 3 3 11 46
9840 3 3 11 56
9841 3 3 11 59
9842 3 3 11 82
9844 3 3 11 74
9845 3 3 11 100
9850 3 3 11 73
9851 3 3 11 100
9852 2 3 11 106
9853 3 3 11 69
9854 3 3 11 73
9855 3 3 11 105
9857 3 3 11 114
9858 3 3 11 93
9860 3 3 11 91
9862 3 3 10 31
9863 3 3 10 56
9864 3 3 10 83
9865 3 3 10 74
9867 3 3 10 93
9868 3 3 10 78
9869 3 3 10 66
9871 3 3 10 66
9872 3 3 10 78
9873 3 3 10 93
9874 3 3 10 78
9875 3 3 10 63
9876 3 3 10 83
9877 3 3 10 61
9878 3 3 10 78
9879 3 3 10 77
9880 3 3 10 77
9881 3 3 10 80
9905 3 3 9 27
9906 3 3 9 52
9907 3 3 9 48
9908 3 3 9 56
9909 3 3 9 50
9910 3 3 9 48
9911 3 3 9 42
9913 3 3 9 64
9914 2 3 9 62
9915 3 3 9 43
9916 3 3 9 44
9918 3 3 9 80
9920 3 3 9 72
9923 3 3 9 74
9924 3 3 9 68
9925 3 3 9 92
9927 2 3 8 9
9928 3 3 8 16
9929 3 3 8 38
9936 3 3 8 50
9937 3 3 8 41
9938 3 3 8 27
9939 2 3 8 46
9942 3 3 8 43
9953 3 3 8 39
9954 2 3 8 48
9955 3 3 8 48
9956 3 3 8 49
9957 3 3 8 47
9958 3 3 8 66
9959 2 3 8 45
9960 2 3 8 46
9961 3 3 8 58
9965 3 3 8 54
9966 3 3 8 82
9967 3 3 8 64
9969 3 3 8 46
9970 3 3 8 76
9971 2 3 8 64
9972 3 3 8 57
9974 3 3 8 53
9975 3 3 8 50
9976 2 3 8 62
9977 3 3 8 55
9978 3 3 8 77
9980 3 3 8 65
9981 3 3 8 64
9982 3 3 8 135
9983 3 3 7 11
9984 3 3 7 26
9985 3 3 7 31
9986 3 3 7 20
9987 3 3 7 38
9988 3 3 7 29
9991 3 3 7 34
9992 3 3 7 57
9993 3 3 7 37
9994 3 3 7 36
9995 3 3 7 49
9997 3 3 7 28
9998 3 3 7 33
9999 3 3 7 46
10000 3 3 7 40
10001 3 3 7 59
10002 3 3 7 39
10003 3 3 7 57
10006 3 3 7 39
10007 3 3 7 57
10008 3 3 7 53
10009 3 3 7 57
10010 3 3 7 41
10011 3 3 7 59
10012 3 3 7 53
10013 3 3 7 59
10014 3 3 7 95
10015 3 3 7 54
10016 3 3 7 49
10017 3 3 7 43
10018 2 3 7 57
10019 3 3 7 47
10020 3 3 7 56
10021 2 3 7 89
10025 3 3 7 53
10026 3 3 7 57
10027 3 3 7 61
10028 3 3 7 67
10029 3 3 7 51
10030 3 3 7 71
10031 3 3 7 94
10037 2 3 6 6
10038 3 3 6 8
10042 3 3 6 9
10044 3 3 6 27
10045 3 3 6 16
10046 3 3 6 31
10047 3 3 6 22
10048 3 3 6 19
10049 3 3 6 42
10050 3 3 6 24
10051 3 3 6 33
10052 2 3 6 32
10054 3 3 6 21
10055 3 3 6 21
10056 3 3 6 41
10057 3 3 6 36
10058 3 3 6 50
10059 3 3 6 35
10060 3 3 6 35
10061 3 3 6 32
10062 3 3 6 38
10063 3 3 6 51
10064 3 3 6 57
10065 3 3 6 36
10066 3 3 6 34
10067 3 3 6 51
10068 3 3 6 39
10069 3 3 6 37
10070 3 3 6 50
10071 3 3 6 64
10072 3 3 6 49
10073 3 3 6 38
10074 3 3 6 42
10075 3 3 6 45
10076 3 3 6 50
10077 3 3 6 56
10078 3 3 6 46
10079 3 3 6 40
10080 3 3 6 54
10081 3 3 6 83
10083 3 3 6 62
10084 3 3 6 59
10085 2 3 6 107
10086 3 3 6 64
10087 2 3 6 104
10088 3 3 5 10
10089 3 3 5 18
10090 3 3 5 20
10091 3 3 5 21
10092 3 3 5 21
10094 2 3 5 29
10095 3 3 5 31
10096 3 3 5 30
10097 3 3 5 26
10098 3 3 5 21
10099 3 3 5 19
10100 3 3 5 39
10101 3 3 5 33
10102 3 3 5 29
10103 3 3 5 22
10104 3 3 5 36
10105 3 3 5 34
10106 3 3 5 36
10107 3 3 5 38
10108 3 3 5 23
10109 3 3 5 30
10110 3 3 5 45
10111 3 3 5 43
10112 3 3 5 28
10113 2 3 5 34
10114 3 3 5 35
10116 3 3 5 31
10117 3 3 5 43
10118 3 3 5 33
10119 3 3 5 43
10120 3 3 5 39
10121 3 3 5 37
10122 3 3 5 32
10123 3 3 5 33
10124 3 3 5 60
10125 3 3 5 50
10126 3 3 5 65
10127 3 3 5 42
10128 3 3 5 46
10129 3 3 5 64
10130 3 3 5 42
10131 3 3 5 37
10132 3 3 5 47
10133 3 3 5 54
10145 3 3 5 45
10146 3 3 5 55
10147 3 3 5 40
10148 3 3 5 61
10149 3 3 5 45
10150 3 3 5 57
10151 3 3 5 34
10152 3 3 5 40
10153 2 3 5 44
10154 3 3 5 39
10155 2 3 5 55
10156 3 3 5 46
10157 3 3 5 73
10158 3 3 5 77
10159 3 3 5 73
10160 3 3 5 60
10161 3 3 5 71

This multiplicon is not redundant, but is the parent of one or more redundant multiplicons.
To explore these redundant reduced colinear regions, view the redundant multiplicon(s) in the table below.

Multiplicon Id #Species #Segments #Anchorpoints Profile Length
126483 2 2 5 27