Multiplicon view: 34709 (Experiment Id: 1)   top

The Multiplicon view displays the aligned gene strings of a set of homologous segments.

Multiplicon Information

Multiplicon Id #Species #Segments #Anchorpoints Profile Length
34709 2 2 2589 3901

Loading...please wait

Gene Information

Gene Family Information

Options

Draw mode Segment ordering Species

This multiplicon is a lower level multiplicon with child multiplicons, indicating that there are multiplicons with more colinear segments in the same genomic region.
To explore the child multiplicons, view the multiplicon in the table below.

Multiplicon Id #Species #Segments #Anchorpoints Profile Length
34710 2 3 88 130
34849 3 3 75 308
35134 3 3 69 186
35165 3 3 67 245
35362 2 3 59 190
35513 3 3 59 220
35546 2 3 55 114
35549 3 3 55 157
35556 3 3 54 167
35559 3 3 52 162
35571 2 3 51 88
35606 3 3 50 153
35607 2 3 49 78
35691 3 3 48 129
35988 3 3 46 213
36007 3 3 45 161
36009 2 3 42 160
36018 2 3 41 71
36032 3 3 41 163
36105 3 3 40 127
36258 3 3 39 94
36259 2 3 38 51
36287 3 3 38 157
36299 3 3 38 153
36313 3 3 37 101
36314 3 3 37 170
36317 3 3 36 134
36319 2 3 33 48
36326 3 3 33 92
36353 3 3 33 145
36469 3 3 33 133
36470 2 3 32 72
36521 2 3 31 50
36522 2 3 31 96
36570 3 3 31 94
36647 2 3 30 111
36651 3 3 29 71
36654 3 3 29 149
36655 2 3 28 66
36658 2 3 28 81
36661 2 3 28 67
36662 3 3 28 91
36668 3 3 28 122
36671 3 3 28 113
36672 3 3 28 171
36675 3 3 28 160
36682 2 3 27 33
36684 3 3 27 54
36693 2 3 27 59
36696 3 3 27 112
36697 2 3 26 41
36698 3 3 26 70
36737 3 3 25 64
36738 2 3 24 27
36752 3 3 24 96
36753 3 3 24 115
36754 3 3 23 61
36758 3 3 23 55
36776 3 3 23 68
36778 3 3 23 101
36781 2 3 22 27
36782 3 3 22 47
36783 3 3 22 99
36791 3 3 22 78
36793 3 3 21 113
36796 2 3 20 38
36801 2 3 20 61
36802 2 3 20 48
36804 3 3 20 47
36805 3 3 20 76
36829 3 3 20 96
36835 3 3 20 75
36851 2 3 19 26
36882 3 3 19 55
36883 3 3 19 61
36884 3 3 19 88
36885 2 3 18 41
36886 2 3 18 37
36890 3 3 18 40
36891 3 3 18 46
36892 3 3 18 58
36894 3 3 18 59
36895 3 3 18 78
36897 3 3 18 87
36898 2 3 18 53
36899 3 3 18 71
36900 3 3 18 70
36901 3 3 18 101
36902 3 3 17 26
36903 3 3 17 49
36904 3 3 17 58
36915 3 3 17 57
36916 3 3 17 43
36917 3 3 17 75
36922 3 3 17 73
36936 3 3 17 112
36940 3 3 17 131
36941 3 3 16 40
36942 3 3 16 38
36947 3 3 16 51
36948 3 3 16 55
36949 3 3 16 57
36950 3 3 16 82
36952 3 3 15 57
36953 3 3 15 59
36959 2 3 15 47
36960 3 3 15 57
36962 3 3 15 68
36963 3 3 15 60
36965 2 3 15 55
36966 3 3 15 51
36968 2 3 14 25
36972 3 3 14 32
36973 3 3 14 48
36974 3 3 14 43
36975 3 3 14 45
36981 3 3 14 51
36982 3 3 14 59
36986 3 3 14 62
36989 3 3 14 55
36990 3 3 14 108
36991 3 3 14 98
36994 3 3 13 23
36996 3 3 13 23
37001 3 3 13 31
37005 3 3 13 34
37006 3 3 13 30
37007 3 3 13 42
37009 3 3 13 73
37010 3 3 13 41
37011 3 3 13 47
37012 3 3 13 51
37015 3 3 13 46
37016 3 3 13 81
37017 3 3 13 80
37018 3 3 13 65
37019 3 3 13 102
37020 3 3 12 20
37023 3 3 12 23
37027 3 3 12 27
37029 3 3 12 23
37033 2 3 12 62
37034 3 3 12 63
37035 3 3 12 58
37036 3 3 12 41
37037 3 3 12 106
37038 3 3 12 84
37041 3 3 12 63
37049 3 3 12 79
37058 3 3 11 14
37059 3 3 11 15
37062 3 3 11 19
37067 3 3 11 20
37068 3 3 11 23
37069 3 3 11 34
37070 3 3 11 30
37071 3 3 11 63
37072 3 3 11 61
37075 3 3 11 60
37076 3 3 11 38
37077 3 3 11 52
37078 3 3 11 74
37080 3 3 11 61
37083 3 3 11 117
37085 3 3 11 67
37086 3 3 11 77
37087 3 3 10 22
37094 3 3 10 19
37095 3 3 10 32
37096 3 3 10 28
37097 2 3 10 52
37098 3 3 10 35
37101 3 3 10 38
37103 3 3 10 70
37104 3 3 10 54
37105 2 3 10 103
37106 3 3 10 72
37107 3 3 9 13
37111 3 3 9 13
37112 3 3 9 18
37113 3 3 9 16
37116 3 3 9 22
37117 3 3 9 17
37120 3 3 9 22
37122 2 3 9 19
37123 3 3 9 24
37124 3 3 9 27
37137 3 3 9 29
37144 3 3 9 20
37146 3 3 9 27
37147 3 3 9 27
37148 3 3 9 38
37149 2 3 9 43
37150 3 3 9 28
37151 3 3 9 25
37152 3 3 9 34
37153 3 3 9 41
37154 3 3 9 30
37155 3 3 9 56
37156 3 3 9 38
37157 3 3 9 39
37158 3 3 9 66
37159 3 3 9 82
37160 3 3 9 50
37162 3 3 9 44
37164 2 3 9 51
37165 3 3 9 85
37166 3 3 9 73
37170 3 3 9 48
37171 3 3 9 52
37172 3 3 9 42
37173 3 3 9 87
37174 3 3 9 108
37175 2 3 8 9
37176 3 3 8 10
37177 3 3 8 15
37178 3 3 8 17
37179 3 3 8 14
37180 3 3 8 15
37181 3 3 8 18
37182 3 3 8 29
37183 2 3 8 28
37184 2 3 8 32
37185 3 3 8 35
37189 3 3 8 24
37190 3 3 8 21
37191 3 3 8 40
37193 2 3 8 40
37194 3 3 8 24
37196 3 3 8 30
37197 3 3 8 26
37198 3 3 8 50
37199 3 3 8 30
37200 2 3 8 43
37205 3 3 8 41
37206 3 3 8 41
37208 3 3 8 56
37212 3 3 8 58
37214 3 3 8 77
37215 3 3 8 56
37216 3 3 8 63
37217 3 3 8 74
37218 3 3 7 8
37219 3 3 7 8
37220 3 3 7 8
37221 3 3 7 8
37222 2 3 7 9
37223 3 3 7 10
37224 2 3 7 9
37226 3 3 7 9
37227 3 3 7 14
37228 3 3 7 10
37229 3 3 7 11
37231 3 3 7 12
37232 3 3 7 13
37233 3 3 7 16
37234 3 3 7 28
37235 3 3 7 15
37237 3 3 7 26
37238 3 3 7 15
37239 3 3 7 26
37244 3 3 7 33
37245 3 3 7 16
37246 3 3 7 19
37247 2 3 7 28
37248 3 3 7 34
37249 3 3 7 20
37252 3 3 7 28
37253 3 3 7 22
37254 3 3 7 23
37255 3 3 7 35
37257 3 3 7 43
37259 3 3 7 22
37260 3 3 7 32
37261 3 3 7 34
37262 2 3 7 39
37263 3 3 7 30
37264 3 3 7 37
37265 3 3 7 49
37267 3 3 7 30
37269 3 3 7 28
37271 3 3 7 29
37272 3 3 7 30
37273 3 3 7 57
37274 3 3 7 37
37275 3 3 7 34
37276 3 3 7 45
37277 3 3 7 36
37278 3 3 7 38
37279 3 3 7 72
37280 3 3 7 116
37281 2 3 7 63
37282 2 3 6 6
37283 3 3 6 6
37284 3 3 6 6
37285 2 3 6 7
37286 3 3 6 7
37287 3 3 6 9
37289 3 3 6 9
37290 3 3 6 9
37291 3 3 6 10
37292 3 3 6 9
37293 3 3 6 11
37294 3 3 6 10
37295 3 3 6 13
37296 3 3 6 12
37297 3 3 6 16
37298 3 3 6 14
37300 3 3 6 21
37301 3 3 6 13
37302 3 3 6 15
37303 3 3 6 27
37304 2 3 6 28
37305 3 3 6 24
37306 3 3 6 28
37307 3 3 6 29
37308 2 3 6 26
37309 3 3 6 29
37310 3 3 6 17
37313 3 3 6 36
37314 3 3 6 27
37315 3 3 6 25
37317 3 3 6 22
37318 3 3 6 25
37319 3 3 6 22
37320 3 3 6 23
37321 3 3 6 37
37322 3 3 6 42
37324 3 3 6 37
37329 3 3 6 33
37330 3 3 6 47
37331 3 3 6 28
37332 3 3 6 42
37333 3 3 6 37
37334 3 3 6 40
37335 3 3 6 29
37336 3 3 6 56
37338 3 3 6 40
37339 3 3 6 51
37340 2 3 6 61
37341 2 3 5 5
37342 3 3 5 5
37343 2 3 5 7
37344 3 3 5 7
37345 3 3 5 7
37346 3 3 5 6
37347 3 3 5 6
37348 3 3 5 8
37349 3 3 5 9
37350 3 3 5 7
37351 3 3 5 7
37352 3 3 5 9
37353 3 3 5 11
37354 3 3 5 8
37355 3 3 5 11
37356 3 3 5 8
37357 3 3 5 8
37358 3 3 5 8
37359 3 3 5 9
37360 3 3 5 12
37361 3 3 5 10
37362 3 3 5 10
37363 3 3 5 11
37364 3 3 5 11
37365 3 3 5 11
37366 3 3 5 18
37367 3 3 5 11
37368 3 3 5 16
37369 2 3 5 17
37370 3 3 5 17
37371 3 3 5 13
37372 3 3 5 12
37373 3 3 5 13
37374 3 3 5 20
37375 3 3 5 14
37376 3 3 5 27
37377 3 3 5 17
37378 3 3 5 35
37379 3 3 5 37
37382 3 3 5 18
37383 3 3 5 20
37384 3 3 5 20
37385 3 3 5 22
37386 3 3 5 23
37387 3 3 5 19
37388 3 3 5 23
37389 3 3 5 33
37390 3 3 5 39
37391 3 3 5 23
37392 3 3 5 25
37393 3 3 5 65
37394 2 3 5 33
37395 3 3 5 43
37396 3 3 5 59
37398 3 3 5 54
37399 3 3 5 62
37400 3 3 5 34
37401 3 3 5 33
37402 3 3 5 58
37404 3 3 5 49
37405 3 3 5 94
37406 3 3 4 30
37407 3 3 4 19
37408 3 3 4 21
37409 3 3 4 30

This multiplicon is not redundant, but is the parent of one or more redundant multiplicons.
To explore these redundant reduced colinear regions, view the redundant multiplicon(s) in the table below.

Multiplicon Id #Species #Segments #Anchorpoints Profile Length
54356 2 2 79 196
103419 2 2 18 32
118319 2 2 15 49
125220 2 2 14 41
180724 2 2 9 11
184312 2 2 9 28
215581 2 2 8 50
267081 2 2 6 7
309298 2 2 6 56