
Manual for FunSiP (Functional Site Prediction)

Michiel Van Bel, Yvan Saeys, Yves Van de Peer

12th December 2007

1 Overview

FunSiP is a software package which bundles several programs that can be used for
the prediction of genes and the annotation of genomes. Also, several associated pro-
grams are included for pattern discovery and detection of regulatory features inside
sequences.

Since the software relies on the use GPLv2 software, we also publish both the
software and the documentation as GPLv3. Some programs inside the software
package rely on an external software tool for predicting the secondary structure of
RNA (standard: RNAfold). This software is also freely availbale as GPL'ed soft-
ware, but is not included. It can however easily be obtained from various internet
sources.
The entire software package was written in java, using Java 5 features. As such, all
programs can be run with either a Java 5 or later Runtime Environment.

1.1 Description of the software package

The software package consists of various programs sharing a single library. The main
di�erent programs (and their associated uses are):

• Functional site recognition:
The program supports the detection of both splice sites and start sites (and
others, if properly con�gured) in any sequence of an organism for which a
trained model (or training data) exists. The idea is the same as in SpliceMa-
chine [1]: extract high-dimensional data from the sequence, build a classi�er
with this data and then classify each possible site (this is done by considering
�xed motifs: AG for acceptor, GT/GC for donor, ATG for start) into either a
pseudo site or a true site. See Figure 1 for an example, applied to acceptor site
recognition. We have extended the expressive power of these ideas by general-
izing the possible site detection. This is done by allowing the user to provide
the �xed motif by which the initial detection occurs. For further information,
see section 4.

1

2 GENERAL OPTIONS

• Feature selection:
By including native support for feature selection techniques, we allow a more
precise detection of functional sites. The feature selection is done by applying
the feature selection techniques to the training data, which then provides a list
of scores (each score is associated with a single feature). This list then acts as
a �lter (e.g. use only the features with non-zero scores) for both the training
and future tests. It has been shown that the feature selection techniques can
signi�cantly improve the performance of classi�cation methods, see section 4.
Feature selection of training data can run either as a standalone program, or
it can be used inside other programs such as the functional site prediction
program. For further information, see section 3.4.

• EuGene Output code Generation:
FunSiP was built upon the same theoretical foundations as SpliceMachine.
The tight coupling between the EuGene genome annotation platform and
SpliceMachine made it imperative that FunSiP was implemented in such a
way that the conversion from SpliceMachine to FunSiP is done as painless as
possible.

Figure 1: Framework of FunSiP, applied to acceptor site recognition

2 General options

The runtime process contains options that are applicable for each of the di�erent
programs. These options are mostly de�ned in the general-options part of the con-
�guration �les (see section 4).

2

2.1 Multi-threading and cluster support 3 FUNCTIONAL SITE PREDICTION

2.1 Multi-threading and cluster support

As usual, most processes are parallel in nature. This also applies to the functional
site recognition program. We have chosen for a coarse grained approach of the
parallelization problem. This implies that only rather large building blocks are used
for parallelization. For example, when considering splice site recognition: normally
one would expect both a donor prediction and an acceptor prediction for a certain
sequence. Our parallization just considers these two as the parallel building blocks,
which are called Classi�cationActions. The �ner grained approach (e.g. di�erent
threads for each seperate string of sequence to be examined) provided more overhead
then it saved. Thus we opted for the coarse grained approach. At startup the user
can de�ne three possible modi of operandi:

• No multithreading or cluster support. This is the default setting. All possible
classi�cationactions are executed in a serial way.

• Single pc multithreading. This setting executes di�erent local threads, with
each thread containing a di�erent classi�cationaction. This approach calls for
some changes, considering race conditions for di�ererent �les etc. However,
on a multi-core computer this type of execution should result in drastically
reduced computation times. When parallelizing two classi�cation actions the
runtime is not split in two though (rather something like 1.8). I/O bottlenecks
are the main reason for this, as both threads will be busy reading and writing
�les at the same time.

• Cluster support. Our package has support for the Grid Engine clustersoft-
ware [5]. Each classi�cation action can thus be launched on a di�erent node
of a cluster. The launch of the initial program should however be done from
the masternode, as not all grid engines support the launching of new jobs from
within the cluster itself.

3 Functional site Prediction

3.1 Overview

FunSiP was originally conceived as a replacement for the SpliceMachine program.
Thus, one of the basic abilities of the program is the capability to predict splice sites
in eukaryotic genes. FunSiP is based on the same general idea of SpliceMachine: ex-
tracting high-dimensional features from sequences in order to build a classi�cation
model, then use this classi�cation model to predict splice sites in a genomic sequence.
By rewriting the code we were able to design a more modular and extensible func-
tional site prediction platform.

FunSiP consists of a series of classi�cation actions that are created after parsing
the con�guration �le (see Figure 2). These actions may progress in a number of
di�erent ways: they can either process training data and build a classi�cation model,
or they can process genome sequence data and predict functional sites (see Figure 3).

3

3.2 Classi�cation Features 3 FUNCTIONAL SITE PREDICTION

Figure 2: General work�ow in FunSiP

3.2 Classi�cation Features

3.2.1 Introduction to Classi�cation Features

When classifying functional sites in a DNA/RNA-sequence, the classi�er (most likely
a Support Vector Machine) needs to be supplied with consistent data that is ex-
tracted from both the training sequences (in order to build the classi�cation model)
and from the test sequences (in order to evaluate the functional sites). The way in
which the data is extracted from the training sequences is highly important because
it is one of the main in�uences on the predictive performance of the classi�er.
The extraction of data from sequences is done by a system of so-called Classi�cation
Features. These Classi�cation Features operate in an independant way from each
other, and extract a specialized type of data from the sequences. Later on, the data
is concatenated and fed to the classi�er in order to build the classi�cation model.
Examples of Classi�cation Features are (a full list can be found later on) :

• Positional Features: These features see what type of k-mer is present at each
position in the sequence. This type of feature performs very well, especially
when the data extraction is limited to a small upstream and downstream range
from the functional site (see further).

• Compositional Features: These features count the number of occurences of
each k-mer, and supply this data to the classi�er. This way a certain codon
or other compositional bias that is non-positional can be detected.

It is clear that a huge amount of di�erent Classi�cation Features can be de�ned.
However, it should also be clear that only a pretty limited number of Classi�cation
Features can extract meaningful data from the sequences, that can be used to dis-
criminate between positives and negatives (i.e. classi�cation). It requires a great

4

3.2 Classi�cation Features 3 FUNCTIONAL SITE PREDICTION

Figure 3: Classi�cation work�ow in FunSiP (applied to splice site classi�cation)

amount of deduction, testing and insight to produce good Classi�cation Features.
Furthermore, most Classi�cation Features have parameters that in�uence their im-
pact on the classi�cation process. Examples of these are:

• Upstream and downstream ranges: When classifying a functional site,
we can consider both data from upstream or downstream regions around the
functional site. Either way, it is also a fact that the range itself has an in�uence.

• Length: When we extract compositional (or positional) features from the
sequence, it is clear that a di�erent amount and type of in�uential data is
extracted when we consider k-mers of varying length. For example (when
considering compositional features): we can count the number of occurences
of single nucleotides in a certain window of the sequence, and this will reveal
perhaps some bias towards the use of certain nucleotides. However, when
we extend this to dinucleotides, codons, ... we see that we gain additional
information, because the neighbouring nucleotides are also perceived as being
in�uential.

As such, we combine di�erent types of Classi�cation Features in order to capture
as much (and di�erent) information as possible in order to maximize the predictive
performance. This selection of Classi�cation Features is done by iterating across
a number of upstream and downstream ranges for each (supplied) Classi�cation
Feature, crossvalidating the training data using the supplied parameters. While this

5

3.2 Classi�cation Features 3 FUNCTIONAL SITE PREDICTION

procedure does not try each and every possible combination of features and their
parameters, it is a su�cient approximation.

3.2.2 Conversions

By using Classi�cation Features we can hope to extract enough information. How-
ever, it is fairly di�cult to capture dependencies among nucleotides that are not
adjacent. An example of this behaviour is the supposed in�uence of the RNA sec-
ondary structure on the splicing process (see [2]). We are also able to extract
information and data from this RNA secondary structure, by the use of exactly the
same Classi�cation Features as used for the primary RNA/DNA sequence, or by the
use of specially designed Classi�cation Features. In order to accomodate for these
dependencies, we use the notion of Conversions. A Conversion is a string of char-
acters that is produced by converting the original DNA sequence. Technically, all
this could also be done by supplying parameters to certain Classi�cation Features.
There are however several reasons why we have opted not to use this approach:

1. The computational cost required for deducting certain Conversions, such as
the RNA secondary structure, is prohibitively high. Because there is no com-
munication between the di�erent Classi�cation Features, the same Conver-
sion would be computed several times again, leading to a severe performance
penalty. Therefore, Conversions that are de�ned to be used (by the con�gu-
ration �le) are computed at the beginning of the program and supplied to the
Classi�cation Features.

2. By seperating the Conversions from the Classi�cation Features we both in-
crease the reusability of the code and adhere to a decent object oriented design.

3. By seperating the Conversions from the Classi�cation Features, we make it
possible to add new Conversions in a plug-and-play way without having to
change Classi�cation Features.

Thus, certain Classi�cation Features have the additional option of receiving a Con-
version parameter. This can lead to an increase in the amount of useful extracted
information. However, it should be noted that the creation of useful Conversions
which capture information from (non-adjacent nucleotides), is not an easy task. A
list of currently usable Conversions is described in section 4.

3.2.3 Creating your own Classi�cation Features and Conversions

The modularity of the platform allows the user to easily create new Classi�cation
Features and Conversions, and have them used by the program with minimal e�ort.
Indeed, the only requirements are that the necessary interfaces are extended (Clas-
si�cationFeature.java or Conversion.java) and that the implementation is placed in
the correct directory:

• ./util/classi�cationFeatures/implementations

• ./util/conversions/implementations

6

3.2 Classi�cation Features 3 FUNCTIONAL SITE PREDICTION

There is however one small caveat: each Classi�cation Feature or Conversion is
recognized by an identi�er (the same used as by the con�guration �les). This iden-
ti�er needs to be unique, otherwise an incorrect Classi�cation Feature or Conversion
might be loaded and used.

3.2.4 Testing new classi�cation features

Ease of use when applying newly de�ned classi�cation features to data is one of the
key advantages of FunSiP. Certain care needs to be taken care however when testing
these new features and interpreting their results.
Testing new features is typically done by crossvalidating the data that is acquired by
extracting these features from the training data. It is however highly recommanded
that you follow the steps below:

1. Run a test with standard positional features of limited length and ranges
(e.g. P 1 20 20) to gain a general view of how well these features are able
to discern between between positive data and negative data. Other results
of crossvalidation should be compared to these "standard" results. Take care
to use a non-trivial amount of training data. 10-fold crossvalidation with 10
positives and 100 negatives that are extracted from a total amount of 10000
positives and 500000 negatives will be totally biased! Using all training data
is not necessary (and even counter productive, as it might lead to computer
memory problems and over�tting), but consider using a decent amount of
training data.

2. Compute how many features will be extracted by the new classi�cation feature.
If this number is low to very low, in comparison to the amount of training data
(ratio is smaller then 0.1), the classi�er will have trouble seperating the positive
and negative data, mostly resulting in the fact that all trainingdata will be
labeled as negatives during the crossvalidation phase. If this is the case, go to
step 3, otherwise go to step 4.

3. Crossvalidating the data with only the new features will not work. Therefore,
in order to test the predictive performance of the new features, it is necessary
to use two classi�cation features. The �rst one is the standard (see point
1), the second one is the newly de�ned classi�cation feature. The results of
the crossvalidation can hereafter be compated to the results of the standard
crossvalidation. After this phase, go to step 5.

4. If the amount of extracted features is su�cient, then they might be used for
crossvalidation. The results of this crossvalidation can then be an indication
to the predictive performance of the new type of classi�cation feature. Go to
step 5.

5. It remains however to be seen whether or not this new classi�cation feature
adds any "new" information to the amount of information that is already gath-
ered by the typical classi�cation features used (positional and compositional

7

3.3 Usage of the FunSiP program 3 FUNCTIONAL SITE PREDICTION

features of various length and ranges). Therefore, as a �nal test towards the
feasibility of the new classi�cation feature, it might prove usefull to perform a
last test:

(a) Use a combination of positional and compositional features as a standard
to retrieve crossvalidation results.

(b) Use the same combination of positional and compositional features, and
add the newly designed classi�cation feature this list. Then use all these
features for crossvalidation.

(c) Compare the results of both crossvalidations.

Figure 4: Various options available in the user interface of funsip.

3.3 Usage of the FunSiP program

3.3.1 Starting the program

The FunSiP program can be used either from the commandline or from the Graph-
ical User Interface (GUI in short). The program is supplied as a jar-�le, and the
necessary batch-�les / script-�les are provided to start the program in GUI-mode.
If necessary, the program can also be started manually as:

• java -jar FunSiP.jar -c [con�guration-�le] <sequence�le(s)> : This will start
the FunSiP program in non-interactive mode and launch the supplied con-
�guration�le (and - if sequence�les are provided and the con�guration�le is
correct - annotate the sequence�le(s)). The program will run in commandline
mode (hence the -c option) if started this way.

8

3.4 Feature selection 3 FUNCTIONAL SITE PREDICTION

• java -jar FunSiP.jar : This will start the FunSiP program with a default con-
�guration�le loaded. The program will run in GUI mode. The program will
be started this way if the user double-clicks the jar-�le in his window manager
(explorer for windows).

• java -jar FunSiP.jar [con�guration-�le] : This will start the FunSiP program
in GUI mode with the supplied con�guration�le preloaded. The user then
has the ability to change several settings, or launch the con�guration�le right
away.

If the jar-�le is unpacked or you did not receive the jar-�le and received only the
source�les, then you can launch the program in a di�erent way. Some script�les
(*nix) and batch�les (Windows) are provided with the source.

• FunSiP.sh [con�guration�le] <sequence�le(s)>: *nix shellscript which launches
the FunSiP program in commandline mode, with the supplied con�guration�le
and it annotates (if applicable) the supplied sequence�le(s).

• FunSiPGui.sh <con�guration�le> : *nix script which launches the FunSiP
program in gui mode, and preloads the con�guration�le (if supplied, otherwise
it loads the standard con�g �le).

• FunSiP.bat [con�guration�le] <sequence�les(s)> : batch�le which launches
the FunSiP program in commandline mode, with the supplied con�guration�le
and it annotates (if applicable) the supplied sequence�le(s).

• FunSiPGui.bat <con�guration�le> : batch�le which launches the FunSiP pro-
gram in gui mode, and preloads the con�guration�le (if supplied, otherwise it
loads the standard con�g �le).

3.3.2 Using the Graphical User Interface

The Graphical User Interface (GUI) has several useful extra properties compared
to the standard commandline interface. The GUI supports both the creation and
adaptation of new con�guration�les, with some supplied wizards to help inexperi-
enced users with the creation of con�guration �les. Indeed, while the base system
is not very complicated, there are numerous options, which can easily confuse new
users. Of course, the user still has the ability to just change the con�guration�le by
hand an launch it by using the commandline.

3.4 Feature selection

3.4.1 Introduction to feature selection

Feature selection is a complex topic in the machine learning. Feature selection
techniques aim to optimize the performance of classi�cation methods by selection
the optimal features, prior to the actual building of the classi�cation model. Of

9

3.4 Feature selection 3 FUNCTIONAL SITE PREDICTION

Figure 5: Runtime building of classi�cation model in the user interface.

course, de�ning which features are optimal is the key problem here, and a lot of
di�erent approaches have been suggested, with varying succes and with di�culties
to compare the approaches since some approaches perform very good for a very
speci�c type of features, while others are more general in nature. Another fact
is that some feature selection techniques can take care of dependencies among the
di�erent features (multivariate), while others do not (univariate). One would expect
that multivariate techniques would result in better performance, since they would
gather additional information. We have however tested 2 di�erent multivariate
techniques (CFS and FCBF), and the results were very disappointing [3].

3.4.2 Using feature selection

When the user opts to use feature selection techniques in order to increase the
predictive performance of the program, he has to de�ne several things:

1. Build a classi�cation model in the normal way, while at the same time set-
ting the feature selection mode to USE_AND_WRITE_FULL_FILTER . Of
course, the feature selection type should be set to a valid feature selection al-
gorithm, and a valid �le indicator for feature selection output �le. Setting this
feature selection mode will result in the feature selection algorithm being ap-
plied to the extracted features. The resulting �lter will then be applied to the
training data - resulting in a smaller and more performant set of training data
- and the �lter will be written to an output �le. After this, the classi�cation
model will be build.

2. Evaluate a sequence-�le with the classi�cation model. This is done by setting
the feature selection mode to LOAD_FILTER and by providing the feature
selection �lter in the feature selection input �le variable (this location should
be the same as the output �le variable de�ned above). This way, the �lter is

10

4 CONFIGURATION FILE

read from the �le and applied to the extracted features from the sequence-�le,
resulting (hopefully) in a better computational and predictive performance.

4 Con�guration File

Normally one would use the GUI for creating con�guration �les. However, some
might want a better insight into the inner workings and options that are available
through the con�guration �le. This section de�nes all the possible parameter op-
tions that can be used in the con�guration �les used by FunSiP. Normally, this list
should have become pretty stable, and not change that much anymore during future
updates.

4.1 General remarks

• Comments can be made by placing a # -character in front at the beginning of
the line. The parser works on a line-by-line basis, so a line starting with #-
-character is a comment, but a line with a # -character in the middle is either
malformed or the # is interpreted as a character.

• There are always at least two sections in the con�guration �le. Each section is
started with a speci�c keyword (see also 4.2.1 and 4.2.2) and ended with the
END keyword.

• The con�guration options consist of both a keyword (indicating what the op-
tion is supposed to do) and a value. The keyword and the value are seperated
by at least one tab (i.e. one or more). If the value consists of multiple subval-
ues, these subvalues are seperated by one or more spaces. It is important to
keep this policy consistent.

• Of course, some options are dependent on others (and so on). We have also
provided the preferred multiplicity (the number of times an option can appear
inside a single con�guration-�le block) of every option.

• Con�guration �les which contain options or values that cannot be parsed re-
port an error indicating (possibly, this is not always feasable) where and what
is wrong. The program will terminate, instead of continuing with default or
wrong options.

4.2 Overview of the di�erent sections.

4.2.1 General Information

Keyword : GENERAL_OPTIONS
This section contains the parameters that are independent of the actions (see later).
Only one GENERAL_OPTIONS section should be de�ned in the con�guration �le.
Possible options (with their respective possible values) in this section are:

11

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

1. multithreading: indicates how the di�erent actions (and possibly di�erent to
be examined sequence �les) need to be scheduled by the Java VM.

• Keyword : MULTITHREADING

• Multiplicity : 0 or 1

• Possible values :

� NO_MULTITHREADING : default setting, runs everything in serial
way.

� SINGLE_PC_MULTITHREADING : creates a number of local Java
threads for every action and every sequence �le. Should only be used
on multi-core machines, since FunSiP is mostly CPU dependent and
not IO dependent.

� CLUSTER_MULTITHREADING : uses the Grid Engine cluster
(qsub commands and such) to spread the workload. Possibly only
available from unix/linux systems.

2. logging style: indicates the amount of output that is produced by the SPR
system. It is based on log4j [6], so the logging style indicators are identical.
The indicators (as shown below) show all data of their setting, AND those
below in the list. E.g. setting the style to WARN will show WARN messages,
ERROR messages and FATAL messages.

• Keyword : LOGGING_STYLE

• Multiplicity : 0 or 1

• Possible values :

� DEBUG : prints every output statement, for development purposes
or those who like verbose output.

� INFO : prints informative output only, default setting.

� WARN : prints warning statements (rarely used).

� ERROR : prints error messages, normally generated by java excep-
tions.

� FATAL : prints error messages, followed by the termination of the
program. These error messages are generated by exceptions.

3. logging output: instead of directing the generated output to screen, the out-
put can also be written to a �le. WARNING (due to some confusion about
terminology): the 'output' indicator used above only applies to the work�ow
output. Data from either crossvalidation or sequence evaluation are written to
their respective �les automatically. These �les can be located in the designated
outputdirectory (see further).

• Keyword : LOGGING_OUTPUT

• Multiplicity: 0 or 1

• Possible values :

12

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

� CONSOLE : default, redirects output to screen (on commandline
prompt).

� FILE [�leName] : redirects output to a �le (indicated by �leName).

4. Merging of prediction output �les: This is necessary if more than one 'ac-
tion' (see below) is de�ned. E.g. Donor-recognition 'action' and acceptor-
recognition 'action'. By setting this option, both prediction �les can be merged
into one resulting �le.

• Keyword : MERGE_PREDICTION_OUTPUT

• Multiplicity: 0 or more

• Possible values:

� [�leName1][�leName2][...][resultFileName] : at least 3 �lenames need
to be de�ned. All but the last are thought of as source�les, the last
one as the �le to which the merged prediction should be written.
Normally, the prediction output�les contains data that is sorted by
a number in the �rst column. This sorting is then applied to the
resulting �le.

5. Optimization of the program parameters : The identi�cation and prediction of
various biological sites (donor, acceptor,...) is done by creating a classi�er that
takes features which are extracted from various sequences and by building a
model with these features (see manual for a more detailed explanation). The
various types of feature-extraction are dependent on their own parameters.
Setting the optimization option will try to create the optimal settings for
this particalur type of classi�er. WARNING: These computations can take a
VERY long time (as in several days) if it is done with:

(a) a small interval parameter and/or a large maximum_range (see Possible
Values).

(b) a large number of classi�cationFeatures (these extract the features)

(c) feature selection algorithms

(d) a large number of training examples

This is due to the fact that every possible optimal setting is tested, which can
of course quickly ramp up to signi�cant numbers.

• Keyword : OPTIMIZER

• Multiplicity: 0 or 1

• Possible values: (all integer)

� [minimum_range][maximum_range][interval] : every (well, with some
exceptions which should not be optimized this way) classi�cationFea-
ture is dependend on both an upstream-range and a downstream-
range from the site that needs to be examined. These 3 integers
de�ne the ranges that will be examined for both upstream - and
downstream use.

13

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

EXAMPLES:

Example which optimizes features, with virtually no output

GENERAL_OPTIONS

MULTITHREADING NO_MULTITHREADING

LOGGING_STYLE FATAL

OPTIMIZER 10 80 10

END

Example which uses the cluster to predit some files and merge them

GENERAL_OPTIONS

MULTITHREADING CLUSTER_MULTITHREADING

LOGGING_STYLE DEBUG

MERGE_PREDICTION_OUTPUT ./output/donor.pred ./output/acceptor.pred ./output/both.pred

END

14

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

4.2.2 Action Information

Keyword : ACTION
These sections (multiplicity is one or greater than one) de�ne the di�erent possible
actions that can be used. E.g. donor site prediction and classi�cation. Now, as
it is, every action is independent of every other action, thus allowing everything
to become parallelizable. It may become di�cult for new users to properly grasp
the possibilities of an ACTION due to the high number of possible options. We
therefore provide �rst a short list with the options grouped by purpose:

1 NAME Standard information
2 CLASSIFICATION_NAME Standard information
3 CLASSIFICATION_FEATURE Standard information
4 OUTPUT_DIRECTORY Standard information
5 COMMAND Standard information
6 MODEL_FILE Standard information

7 CLASSIFIER_TYPE Classi�cation mechanisms information
8 CLASSIFIER_OPTIONS Classi�cation mechanisms information

9 POSITIVE_TRAINING_FILE Classi�cation model building information
10 NEGATIVE_TRAINING_FILE Classi�cation model building information
11 POSITIVE_TRAINING_FILE_SECSTRUCT Classi�cation model building information
12 NEGATIVE_TRAINING_FILE_SECSTRUCT Classi�cation model building information
13 SPLICESITE_POSITION Classi�cation model building information
14 POSITIVE_TRAINING_AMOUNT Classi�cation model building information
15 NEGATIVE_TRAINING_AMOUNT Classi�cation model building information
16 FEATURES_OUTPUT_FILE Classi�cation model building information

17 TEST_FILES Classi�cation model usage information
18 OUTPUT_PREDICTION_FILES Classi�cation model usage information
19 FILE_TYPE Classi�cation model usage information
20 STRAND Classi�cation model usage information
21 CLASSIFICATION_PATTERN Classi�cation model usage information
22 CLASSIFICATION_PATTERN_LOCATION Classi�cation model usage information
23 CLASSIFICATION_PATTERN_OUTPUT Classi�cation model usage information

24 CROSSVALIDATION Crossvalidation information
25 COMPLEXITY_CROSSVALIDATION Crossvalidation information
26 MAXIMUM_CROSSVALIDATION Crossvalidation information

27 FEATURE_SELECTION_TYPE Feature selection information
28 FEATURE_SELECTION_PURPOSE Feature selection information
29 FEATURE_SELECTION_INPUT_FILE Feature selection information
30 FEATURE_SELECTION_OUTPUT_FILE Feature selection information
31 FEATURE_SELECTION_MAX_FEATURES Feature selection information

A full explanation of the possible options (with their respective possible values):

1. Name of the 'action' in the work�ow. Will only be used throughout the work-
�ow and possibly appear in the logging output.

• Keyword : NAME

• Multiplicity : 1

• Possible Values: (String)

� [name] : a string indicating the name.

2. Name of the 'action' that is used in the results. Certain �les will get this name
as pre�x to make the distinction with the output of other 'actions'. Normally,
this name will be shorter than the one provided above.

15

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

• Keyword : CLASSIFICATION_NAME

• Multiplicity : 1

• Possible Values : (String)

� [name] : a string indicating the name used for output purposes

3. The type of features that will be extracted from sequences: classi�cationFea-
tures are one of the main backbones of the program. Each classi�cationFeature
extracts a certain amount of features (�oating point numbers mostly) from a
sequence, and adds these to a list. Each classi�cationFeature always produces
the SAME amount of features for a di�erent sequence, so that all features are
properly aligned. This is necessary in order for the classi�ers to function prop-
erly. All classi�cationFeatures are identi�ed by a unique name (�rst part of
space-separated value), and (eventually) a number of parameters for this clas-
si�cationfeature, in order to optimize the prediction results. During the design
phase of the program, the decision was made to make the di�erent classi�ca-
tionFeatures dynamically loadable. This means that one person only needs
to implement a certain interface and place the resulting class in the correct
directory. While this approach is very usefull for researchers, there always ex-
ists the possiblitiy of name-clashes between classi�cationfeatures : the unique
name can be shared, with all resulting problems. Researchers should thus be
carefull when assigning new names to newly build classi�cationfeatures.

• Keyword : CLASSIFICATION_FEATURE

• Multiplicity : 1 or higher

• Possible Values : (we will give an overview of currently available classi-
�cationfeatures with their respective parameters. Applied to splice site
prediction to make a good example. For further explanation of the dif-
ferent types of classi�cation features, one should look at the manual.)

� P [length][up][down] : this feature extracts positional features of
length length in the interval {splice site-up,splice site+down} of a
sequence. Length, up and down are all integers. Care should be
taken not to choose a to great length, since this will result in a very
sparse feature matrix.

� C [length][up][down] : this feature extracts compositional (occurence
based) features of length length in the interval {splice site-up,splice
site+down}. A di�erence is made between the number of occurences
upstream and downstream, in order to make a decent distinction
between e.g. exons and introns. Length, up and down are all integers.

� PG [length][up][down][conversion] : This is the same as the posi-
tional feature detailed above. However, the extra parameter "con-
version" details a conversion made to the DNA/RNA-sequence to
another sequence of the same length. Examples of conversions are
DNA 7→ AminoAcid and RNA 7→ secondary structure. In the extra
addendum (see below) a list of conversions is described, and ways of
creating your own conversions is also detailed.

16

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

� CG [length][up][down][conversion] : This is the same as the compo-
sitional feature detailed above, with the same extra notion as with
PG-features.

� BP [min_up][max_up] : this feature extracts branchpointfeatures
from a DNA/RNA sequence (can only be used for acceptor splice-
site recognition). This includes distance to the splicesite, binding
potential to U2RNA and pyrimidinetract.

� RF [up][down] : Extracts occurence based features from all 3 reading
frames, with a di�erence between upstream and downstream from
the site to be examined. The features are extracted from the interval
{site-up, site+down}. Both up and down are integers.

� GC [length][up][down] : Extracts the GC-content in a certain shifting
frame (indicated by length) and thus creates a series of features of the
same length as the sequence. Length, up and down are all integers.
The shifting frame will move in the interval {site-up,site+down}.

• Addendum : Conversions. Conversions are functions which map the se-
quence to another sequence. The original sequence is DNA/RNA and
thus consist of a 4-letter alphabet, while the resulting sequence can have
any type of alphabet. When translating the sequence to aminoacids for
example, the new alphabet exists of the 20 di�erent possible types of
aminoacids. Conversions are very usefull since they can be used to cap-
ture dependencies between nucleotides which would otherwise be unno-
ticed (for example RNA secondary structure). Since the implementation
of these conversions is also a lot more easy than the classi�cation features,
and since conversions can also be dynamically added, experimentation
should be fairly simple with these. As is the same case with classi�ca-
tionfeatures, conversions are also identi�ed by a unique name, thus having
the possibility of name clashes (because of careless researchers). Possible
Conversions are:

� DNA_AA : translates every three nucleotides into their respective
amino acid.

� DNA_MK : translates every nucleotide into his respective amino/keto
part. A, C 7→ M and G, T 7→ K

� DNA_RY : translates every nucleotide into his respective pyrimi-
dine/purine. part. A, G 7→ R and C, T 7→ Y

� DNA_SW : translates every nucleotide into his respective strong/weak
interaction counterpart. A, T 7→ W and G, C 7→ S

4. Name of the directory in which all output �les should be placed. If the indi-
cated directory does not exist, then it is created.

• keyword : OUTPUT_DIRECTORY

• multiplicity : 1

• Possible values :

17

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

� [dirName] : string with the path to the outputdirectory

5. Indicator of the job that needs to be performed. This indicates whether a
classi�cation model should be build or whether it should be loaded. The �rst
case is mainly for researchers who want to test new things. The second case
is for general use by the public.

• keyword : COMMAND

• multiplicity : 0 or 1

• Possible values :

� BUILD_MODEL : default, builds a new model from training data

� LOAD_MODEL : loads a model and uses it for classi�cation

6. Name of the �le containing the classi�cation model. There is a small catch
here: if the COMMAND is BUILD_MODEL, then you can just provide a
name and the model will be created and be placed in the OUTPUT-directory.
However, if the COMMAND is LOAD_MODEL, then the user should provide
the exact path to the model-�le (absolute path as in C:/foobar or /foobar/ or
relative path as in ./foobar/).

• keyword : MODEL_FILE

• multiplicity : 1

• possible values : (string value)

� [�leName] : name of the model-�le

7. Classi�ertype used for building and evaluating models: There are a great num-
ber of di�erent classi�ers that can be used as a basis for evaluating sequences.
However, there is a lot of extra work that needs to be done (speci�c to this
project) by each classi�er, thus limiting somewhat their usability because of
coding work. EDIT : only one classi�er working currently : WEKASVM

• Keyword : CLASSIFIER_TYPE

• Multiplicity : 1

• Possible Values:

� WEKASVM : uses the SMO implementation of the Weka machine
learning platform.

8. Each classi�er has a number of di�erent options, of course dependant on their
implementation. When using SVM's as classi�er for example, there is always
the complexity-option (mostly indicated by -C or -c) that gives the penalty
for having datapoints on the wrong side of the hyperplane. As said, these
options are dependent on the classi�er and are passed directly to the classi�er
that is used.

• Keyword : CLASSIFIER_OPTIONS

18

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

• Multiplicity : 0 or 1

• Possible Values :

� [dependent on the classi�er type]

9. Name of the �le with the positive training data: this data should of course be
properly aligned (see manual for an example).

• Keyword : POSITIVE_TRAINING_FILE

• Multiplicity : 0 or 1 (depending on COMMAND, see below)

• Possible values :

� [�leName] : just a string with the path to the positive training �le

10. Name of the �le with the negative training data: this data should of course be
properly aligned (see manual for an example).

• Keyword : NEGATIVE_TRAINING_FILE

• multiplicity : 0 or 1 (depending on COMMAND, see below)

• Possible values :

� [�leName] : just a string with the path to the negative training �le.

11. Name of the �le containing the secondary structures of the positive training
data. Because the computation of the secondary structures can take a pretty
long time, we have opted to include this option to reduce computation time.

• keyword : POSITIVE_TRAINING_FILE_SECSTRUCT

• multiplicity : 0 or 1

• Possible values :

� [�leName] : just a string with the path to the positive secstruct
training �le

12. Name of the �le containing the secondary structures of the negative training
data. Because the computation of the secondary structures can take a pretty
long time, we have opted to include this option to reduce computation time.

• keyword : NEGATIVE_TRAINING_FILE_SECSTRUCT

• multiplicity : 0 or 1

• Possible values :

� [�leName] : string with the path to the negative secstruct training
�le

13. Position of the functional site in the trainingdata.

• keyword : SPLICESITE_POSITION

• multiplicity : 1

19

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

• possible values : (integer value)

� [position] : position of the splice site (typically something like 150)

14. Indicator for the amount of positive training data that is extracted from the
positive training �le. If this option is omitted, the total content of the training
�le will be used.

• keyword : POSITIVE_TRAINING_AMOUNT

• multiplicity : 0 or 1

• Possible values : (integer value)

� [num] : The amount of examples to be extracted from the provided
POSITIVE_TRAINING_FILE.

15. Indicator for the amount of negative training data that is extracted from the
negative training �le. If this option is omitted, the total content of the training
�le will be used.

• keyword : NEGATIVE_TRAINING_AMOUNT

• multiplicity : 0 or 1

• Possible values : (integer value)

� [num] : The amount of examples to be extracted from the provided
NEGATIVE_TRAINING_FILE.

16. Name of the �le containing the extracted features (can be usefull to examine,
therefore we have opted to place it somewhere). The �le will automatically be
placed inside the OUTPUT directory.

• keyword : FEATURES_OUTPUT_FILE

• multiplicity : 0 or 1 (depending on COMMAND).

• possible values : (String value)

� [�leName] : Name of the �le which will be used to write the extracted
features (and possible some headerdata) to. If it has the wrong ex-
tension, the �le extension provided above can be used to elonge the
�lename.

17. Names of the �les that needs to be examined by the classi�er. E.g. a couple
of fasta-�les for which the splicesite need to be examined. It is possible here
to provide the *-wildcard so all �les in a certain directory will be examined.

• keyword : TEST_FILES

• multiplicity : 0 or 1 (depending on COMMAND and CROSSVALIDA-
TION)

• Possible values :

20

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

� [�leName][...] : list of space-seperated paths to the �les that need to
be examined.

18. Names of the �les to which the output of the prediction of the classi�cation
should be written. These �les will then be place inside the OUTPUT_DIRECTORY.
Normally the amount of output�les should match the amount of test�les, but
if this is not the case, the output�lenames will be created on the �y. However,
in this case the MERGE_OUTPUT control will most likely not work.

• keyword : OUTPUT_PREDICTION_FILES

• multiplicity : 0 or 1 (depending on TEST_FILES of course)

• Possible values : (String values)

� [�leName][...] : list of space-seperated �lenames for the output

19. Filetype of the test �les. Because each �letype (fasta, embl) has its own
internal structure, this indicator is needed.

• keyword : FILE_TYPE

• multiplicity : 0 or 1

• Possible values : (String values)

� FASTA : Fasta �le type

� EMBL : EMBL �le type

20. Indicator for the strand of the test�les on which the classi�cation action should
be performed.

• keyword : STRAND

• multiplicity : 0 or 1

• Possible values :

� FORWARD : forward strand only

� REVERSE : reverse strand only

� BOTH : default, both strands

21. Pattern that is used for primary selection, prior to the actual classi�cation.
Using the acceptor splicesite recognition as an example, we see that every
acceptor ends with the AG-pattern. Thus, when evaluating a sequence �le,
the �rst selection is done on this pattern: a list of all positions in the sequence
that have the AG-pattern is compiled, and then the contents of this list are
used for classi�cation.

• keyword : CLASSIFICATION_PATTERN

• multiplicity : 1

• Possible values : (String value)

21

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

� [pattern] : A String (not null, length greater or equal than 1 � al-
though length 1 really is too small, as it will result in an enormous
amount of selected positions.) that indicates the pattern to be used
for selection prior to classi�cation.

22. An extra indicator for locating the pattern inside a sequence. The basic ra-
tionale behind this is the fact that when we do pattern matching to �nd the
primary selection, then the program has no way to determine whether the
site of interest is before the pattern (e.g. donor splice site recognition � GT
-pattern) or behind the pattern (e.g. acceptor splice site recognition � AG-
pattern) or even somewhere else. Thus, this indicator adds or subtracts a
certain number from the position of the located pattern. The initial position
of the located pattern is the position of the �rst character of the pattern. If
this option is omitted, then no increase/decrease is performed on the pattern
location.

• keyword : CLASSIFICATION_PATTERN_LOCATION

• multiplicity : 0 or 1

• Possible values : (integer value, can be negative)

� [extra] : The extra number that is added (or subtracted, in case the
number is negative) to the position of the pattern location.

23. During the evaluation of a sequence, every position that conforms to a certain
pattern (see above) is selected and then classi�ed. However, these selected
positions do not always match the positions that are needed in the output�les.
More often than not, there is an o�set of 1 or more nucleotides (even despite the
CLASSIFICATION_PATTERN_LOCATION option), caused for example by
the di�erence in counting: some start counting from 0 and others from 1. So
in order to correct for these o�sets in the output, we have created this option.
This option adds (or subtracts) an extra number to the output locations that
conform to the pattern.

• keyword : CLASSIFICATION_PATTERN_OUTPUT

• multiplicity : 0 or 1

• Possible values : (Integer values, can be negative)

� [forward][reverse] : Two extra numbers that correct the output so it
conforms to the expectations. The �rst one is the correction for the
classi�cation of the forward strand, the second one is the correction
for the classi�cation of the reverse strand. Both are always needed
when using this option. When only one is needed (e.g. we only want
to classify the sequence on the reverse strand), is su�ces to �ll in 0
for the correction of the strand that is not used. Of course, when
classi�cation of both strands is required, then both numbers should
be �lled in meaningfully.

22

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

24. Indicator whether or not crossvalidation should occur. This option cannot be
used together with the TEST_FILES option, and it should be used with the
COMMAND option set to BUILD_MODEL. The output of the crossvalidation
is put in a �le and placed in the OUTPUT_DIRECTORY.

• keyword : CROSSVALIDATION

• multiplicity : 0 or 1

• possible values : (integer)

� [crossvalidation_fold] : this parameter indicates the fold of the cross-
validation. Normal numbers are 5 and 10.

25. Indicator to perform a series of crossvalidations in a row, each with a di�erent
complexity for the SVM that is used (complexity ranging from 2−10 till 24).
This way the best complexity can be searched for a certain classi�cation feature
or set of classi�cation features. This method is used by the optimalization
procedure.

• keyword : COMPLEXITY_CROSSVALIDATION

• multiplicity : 0 or 1 (depending on CROSSVALIDATION)

• Possible values :

� TRUE : Use this method

� FALSE : don't use this method (default)

26. Indicator (used for developpement and research only!!) for the maximum ratio
between positive and negative training examples. This can be used to examine
the optimum ratio between positive and negative training examples.

• keyword : MAXIMUM_CROSSVALIDATION

• multiplicity : 0 or 1 (depending on CROSSVALIDATION)

• possible values : (integer value)

� [ratio] : a ratio indicating how many more negative examples than
positive examples must be used.

27. Applying feature selection prior to classi�cation can drastically increase the
prediction correctness (see manual for further details). This option allows
the user to set the algorithm to be used by the featureselection - stub of
the FunSiP program. When a valid algorithm is selected, feature selection is
automatically activated. Feature selection is applied to the features extracted
from the training data. After transforming the results of the feature selection
algorithm to a �lter (most FS algorithms just give a number between 0 and 1 to
each feature), the �lter will be used on both the training �les themselves (and
thus in�uence the model building and the crossvalidation) and the extracted
features of the sequence to be evaluated. All the current Feature selection
algorithms are taken from the WEKA machine learning library.

23

4.2 Overview of the di�erent sections. 4 CONFIGURATION FILE

• keyword : FEATURE_SELECTION_TYPE

• multiplicity : 0 or 1

• Possible values : (the names of the available algorithms are provided)

� NO_FEATURE_SELECTION : No feature selection to be used.
Default setting.

� PRECOMPUTED_FILTER : to be used when a �lter is written to
�le and this �lter should be extracted from the �le and be applied to
other features (be it training data or sequence data).

� SYMMETRICAL_UNCERTAINTY : Applies the Symmetrical un-
certainty algorithm. This algorithm is univariate.

� CFS : Applies the CFS algorithm. This algorithm is multivariate.

� INFORMATION_GAIN : Applies the Information gain statistical
algorithm to the features. This algorithm is univariate.

� CHI_SQUARED : Applies the Chi squared statistic to the features.
This algorithm is univariate.

� GAIN_RATIO : Applies theGain ratio statistic to the features. This
algorithm is univariate.

� RELIEF : Applies the Relief algorithm. This algorithm is univariate.

� FCBF : Applies the FCBF algoritgm. This algorithm is multivariate.

28. By using the FEATURE_SELECTION_TYPE option (see above), the user
has the ability to decide what a algorithms to use. This option gives the user
the ability to decide what to do with the �lter, after the feature selection has
been carried out. This may include using the �lter by applying it to both the
training data and the sequence data, writing the �lter to a �le, etc.

• keyword : FEATURE_SELECTION_PURPOSE

• multiplicity : 0 or 1

• Possible values :

� USE_FILTER : Use the �lter, by applying it to both training data
and sequence data.

� WRITE_MINIMAL_FILTER : Write a �lter to �le. Only a minimal
�lter is considered: this means that only features with a non-zero
score (generated by the FS algorithm) will be written to the �le.

� WRITE_FULL_FILTER : Write a �lter to �le. The full �lter is
considederd : this means that every feature and its associated score
(as generated by the FS algoritm) will be written to the �le.

� LOAD_FILTER : Loads a �lter from a �le and applies this �lter to
the training data and test data.

� USE_AND_WRITE_FULL_FILTER : A combination of USE_FILTER
and WRITE_FULL_FILTER (mainly for development purposes).

24

REFERENCES REFERENCES

29. This option allows the user to de�ne the input-�le to be used when the
LOAD_FILTER value is selected in the FEATURE_SELECTION_PURPOSE
option.

• keyword : FEATURE_SELECTION_INPUT_FILE

• multiplicity : 0 or 1 (dependent on FEATURE_SELECTION_PURPOSE)

• Possible values : (String value)

� [name] : name of the �le containing the feature selection �lter.

30. This option allows the user to de�ne the output-�le to be used when the
WRITE_MINIMAL_FILTER value or WRITE_FULL_FILTER value is se-
lected in the FEATURE_SELECTION_PURPOSE option.

• keyword : FEATURE_SELECTION_OUTPUT_FILE

• multiplicity : 0 or 1 (dependent on FEATURE_SELECTION_PURPOSE)

• Possible values : (String value)

� [name] : name of the �le to be used when writing a �lter to a �le.

31. When applying feature selection algorithms, it may be in the best interests of
the user to set an upper limit to the amount of features that will be retained
by the feature selection algorithm and its generated scores. Therefore, this
option was designed and it allows the user to set this upper limit.

• keyword : FEATURE_SELECTION_MAX_FEATURES

• multiplicity : 0 or 1 (dependent on FEATURE_SELECTION_PURPOSE)

• Possible values : (integer value)

� [num] : the maximum number of features to be retained after the
feature selection algorithm has run.

References

[1] Sven Degroeve, Yvan Saeys, Bernard De Baets, Pierre Rouze, Yves Van de Peer,
SpliceMachine: predicting splice sites from high-dimensional local context repre-
sentations, Bioinformatics 21, No. 8, 1332-1338 (2005).

[2] Emanuele Buratti, Francisco E. Baralle, In�uence of RNA Secondary Structure
on the Pre-mRNA Splicing Process, Molecular and Cellular Biology 24, No. 24,
10505-10514 (2004).

[3] Michiel Van Bel, Yvan Saeys, Yves Van de Peer, Increasing the performance of
splice site prediction: A feature selection approach, Poster at MSLB07, available
at http://bioinformatcs.psb.ugent.be

[4] Saeys,Y.,Inza,I.,Larranaga,P., A review of feature selection techniques in bioin-
formatics, Bioinformatics (In Press) (2007).

25

REFERENCES REFERENCES

[5] http://gridengine.sunsource.net/

[6] http://logging.apache.org/log4j/1.2/index.html

26

