|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectutil.results.CrossValidationResult
public class CrossValidationResult
This class contains the normal results of a crossvalidation (number of false positives/false negatives/true positives/true negatives and the distances and labels of the results). From here on all other results are extracted from this data. The memeory usage should not be a problem, since only 4 arrays of fixed size are used (say 10000 training examples --> 4 * 8 * 10000 bytes = 320 kb).
Constructor Summary | |
---|---|
CrossValidationResult()
Creates a CrossValidationResult object. |
Method Summary | |
---|---|
void |
compute_roc()
computes the roc-curve data from the distances and labels that are provided. |
void |
computeDeductedData()
This method computes all the other results, following the given basic data of the false positives/true positives/... |
double |
getAccuracy()
Returns the accuracy of the crossvalidation |
double |
getAccuracy2()
Returns another accuracy measurement |
double |
getApproximate_correlation()
Returns the approximate correlation |
double |
getAuc()
Returns the area under the roc-curve (a measurement for the performance of a classifier). |
double |
getCorrelation_coefficient()
Returns the correlation coefficient of the crossvalidation |
double[] |
getDistances()
|
double |
getError_rate()
Returns the error rate of the crossvalidation |
double |
getF1_measure()
Returns the F1-measure of the crossvalidation (f1-measure is the harmonic means of sensitivity and specificity) |
int |
getFalseNegatives()
Returns the amount of false negatives of the crossvalidation |
int |
getFalsePositives()
Returns the amount of false positives of the crossvalidation |
double |
getFp_rate()
Returns the false positive rate of the crossvalidation |
double |
getFp5_measure()
Returns the FP5% measure from the crossvalidation |
double[] |
getLabels()
|
double |
getMeanSquaredError()
Returns the mean squared error of the crossvalidation |
double[] |
getRoc_fp_rate()
Returns the false positive rate for the roc curve |
double[] |
getRoc_tp_rate()
Returns the true positive rate for the roc curve |
double |
getSensitivity()
Returns the sensitivity of the crossvalidation |
double |
getSpecificity()
Returns the specificity of the crossvalidation |
double |
getSquaredCorrelationCoefficient()
Returns the squared correlation coefficient of the crossvalidation |
int |
getTotalNegatives()
Returns the amount of total negatives |
int |
getTotalPositives()
Returns the total amount of positives |
int |
getTrueNegatives()
Returns the amount of true negatives |
int |
getTruePositives()
Returns the amount of true positives |
void |
setAccuracy(double accuracy)
|
void |
setAccuracy2(double accuracy2)
|
void |
setApproximate_correlation(double approximate_correlation)
|
void |
setAuc(double auc)
|
void |
setCorrelation_coefficient(double correlation_coefficient)
|
void |
setDistances(double[] distances)
Sets the distancesto the hyperplane for all training examples |
void |
setError_rate(double error_rate)
|
void |
setF1_measure(double f1_measure)
|
void |
setFalseNegatives(int falseNegatives)
Sets the amount of false negatives of the crossvalidation |
void |
setFalsePositives(int falsePositives)
Sets the amount of false positives |
void |
setFp_rate(double fp_rate)
|
void |
setFp5_measure(double fp5_measure)
|
void |
setLabels(double[] labels)
Sets the labels (1/-1 for positive/negative) for all the training examples. |
void |
setMeanSquaredError(double meanSquaredError)
|
void |
setRoc_fp_rate(double[] roc_fp_rate)
|
void |
setRoc_tp_rate(double[] roc_tp_rate)
|
void |
setSensitivity(double sensitivity)
|
void |
setSpecificity(double specificity)
|
void |
setSquaredCorrelationCoefficient(double squaredCorrelationCoefficient)
|
void |
setTotalNegatives(int totalNegatives)
Sets the total amount of negatives |
void |
setTotalPositives(int totalPositives)
Sets the total amount of positives |
void |
setTrueNegatives(int trueNegatives)
Sets the amount of true negatives |
void |
setTruePositives(int truePositives)
Sets the amount of true positives |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public CrossValidationResult()
Method Detail |
---|
public void computeDeductedData()
public void compute_roc()
public double getAccuracy()
public double getMeanSquaredError()
public double getSquaredCorrelationCoefficient()
public int getFalseNegatives()
public void setFalseNegatives(int falseNegatives)
falseNegatives
- The new amount of false negativespublic int getFalsePositives()
public void setFalsePositives(int falsePositives)
falsePositives
- The new amount of false positivespublic int getTrueNegatives()
public void setTrueNegatives(int trueNegatives)
trueNegatives
- The new amount of true negativespublic int getTruePositives()
public void setTruePositives(int truePositives)
truePositives
- The new amount of true positivespublic int getTotalNegatives()
public void setTotalNegatives(int totalNegatives)
totalNegatives
- The total amount of negativespublic int getTotalPositives()
public void setTotalPositives(int totalPositives)
totalPositives
- The new total amount of positivespublic double getAccuracy2()
public double getApproximate_correlation()
public double getCorrelation_coefficient()
public double getError_rate()
public double getSensitivity()
public double getSpecificity()
public double getFp_rate()
public double getF1_measure()
public void setDistances(double[] distances)
distances
- The distances of the crossvalidaded trainingexamplespublic void setLabels(double[] labels)
labels
- The labels of the training examples.public double[] getRoc_fp_rate()
public double[] getRoc_tp_rate()
public double getFp5_measure()
public double getAuc()
public double[] getDistances()
public double[] getLabels()
public void setAccuracy(double accuracy)
public void setAccuracy2(double accuracy2)
public void setApproximate_correlation(double approximate_correlation)
public void setAuc(double auc)
public void setCorrelation_coefficient(double correlation_coefficient)
public void setError_rate(double error_rate)
public void setF1_measure(double f1_measure)
public void setFp_rate(double fp_rate)
public void setFp5_measure(double fp5_measure)
public void setMeanSquaredError(double meanSquaredError)
public void setRoc_fp_rate(double[] roc_fp_rate)
public void setRoc_tp_rate(double[] roc_tp_rate)
public void setSensitivity(double sensitivity)
public void setSpecificity(double specificity)
public void setSquaredCorrelationCoefficient(double squaredCorrelationCoefficient)
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |