P. Nitric oxide (norB) gene sequence analysis in cultivated denitrifiers reveals discrepancies with nitrite oxide (nir) gene phylogeny.

Gene sequence analysis of cnorB and qnorB, both encoding nitric oxide reductases, was performed on pure cultures of denitrifiers, for which previously nir genes were analysed. Only 30% of the 227 denitrifying strains rendered a norB amplicon. The cnorB gene was dominant in Alphaproteobacteria, and dominantly coexisted with the nirK gene, coding for the copper-containing nitrite reductase. Both norB genes were equally present in Betaproteobacteria but no linked distributional pattern of nir and norB genes could be observed. The overall cnorB phylogeny was not congruent with the widely accepted organism phylogeny based on 16S rRNA gene sequence analysis, with strains from different bacterial classes having identical cnorB sequences. Denitrifiers and non-denitrifiers could be distinguished through qnorB gene phylogeny, without further grouping at a higher taxonomic resolution. Comparison of nir and norB phylogeny revealed that genetic linkage of both genes is not widespread among denitrifiers. Thus, independent evolution of the genes for both nitrogen oxide reductases does also occur.

Heylen, K., Vanparys, B., Gevers, D., Wittebolle, L., Boon, N., De Vos, P. (2006) P. Nitric oxide (norB) gene sequence analysis in cultivated denitrifiers reveals discrepancies with nitrite oxide (nir) gene phylogeny. Environ. Microbiol. 9(4):1072-7..









Contact:
VIB / UGent
Bioinformatics & Evolutionary Genomics
Technologiepark 927
B-9052 Gent
BELGIUM
+32 (0) 9 33 13807 (phone)
+32 (0) 9 33 13809 (fax)

Don't hesitate to contact the in case of problems with the website!

You are visiting an outdated page of the BEG/Van de Peer Lab site.

Not all pages have been ported, so these archived pages are still available.

Redirect to the new website?