Evolution according to large ribosomal subunit RNA.

Evolutionary trees were constructed, by distance methods, from an alignment of 225 complete large subunit (LSU) rRNA sequences, representing Eucarya, Archaea, Bacteria, plastids, and mitochondria. A comparison was made with trees based on sets of small subunit (SSU) rRNA sequences. Trees constructed on the set of 172 species and organelles for which the sequences of both molecules are known had a very similar topology, at least with respect to the divergence order of large taxa such as the eukaryotic kingdoms and the bacterial divisions. However, since there are more than ten times as many SSU as LSU rRNA sequences, it is possible to select many SSU rRNA sequence sets of equivalent size but different species composition. The topologies of these trees showed considerable differences according to the particular species set selected. The effect of the dataset and of different distance correction methods on tree topology was tested for both LSU and SSU rRNA by repetitive random sampling of a single species from each large taxon. The impact of the species set on the topology of the resulting consensus trees is much lower using LSU than using SSU rRNA. This might imply that LSU rRNA is a better molecule for studying wide-range relationships. The mitochondria behave clearly as a monophyletic group, clustering with the Proteobacteria. Gram-positive bacteria appear as two distinct groups, which are found clustered together in very few cases. Archaea behave as if monophyletic in most cases, but with a low confidence.

De Rijk, P., Van de Peer, Y., Van den Broeck, I., De Wachter, R. (1995) Evolution according to large ribosomal subunit RNA. J. Mol. Evol. 41(3):366-75.









Contact:
VIB / UGent
Bioinformatics & Evolutionary Genomics
Technologiepark 927
B-9052 Gent
BELGIUM
+32 (0) 9 33 13807 (phone)
+32 (0) 9 33 13809 (fax)

Don't hesitate to contact the in case of problems with the website!