Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks

Background:
Differential networks have recently been introduced as a powerful way to study the dynamic rewiring capabilities of an interactome in response to changing environmental conditions or stimuli. Currently, such differential networks are generated and visualised using ad hoc methods, and are often limited to the analysis of only one condition-specific response or one interaction type at a time.

Results:
In this work, we present a generic, ontology-driven framework to infer, visualise and analyse an arbitrary set of condition-specific responses against one reference network. To this end, we have implemented novel ontology-based algorithms that can process highly heterogeneous networks, accounting for both physical interactions and regulatory assocations, symmetric and directed edges, edge weights and negation. We propose this integrative framework as a standardized methodology that allows a unified view on differential networks and promotes comparability between differential network studies. As an illustrative application, we demonstrate its usefulness on a plant abiotic stress study and we experimentally confirmed a predicted regultor.

Availability:
Diffany is freely available as open-source java library and Cytoscape plugin from http://bioinformatics.psb.ugent.be/supplementary_data/solan/diffany/.

Keywords:
Differential networks; Osmotic stress response; Systems biology



Van Landeghem, S., Van Parys, T., Dubois, M., Inzé, D., Van de Peer, Y. (2016) Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks. BMC Bioinformatics 17(1):18.









Contact:
VIB / UGent
Bioinformatics & Evolutionary Genomics
Technologiepark 927
B-9052 Gent
BELGIUM
+32 (0) 9 33 13807 (phone)
+32 (0) 9 33 13809 (fax)

Don't hesitate to contact the in case of problems with the website!