
Vol. 24 no. 2 2008, pages 176–183BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm562

Gene expression

Analysis of a Gibbs sampler method for model-based clustering

of gene expression data
Anagha Joshi1,2, Yves Van de Peer1,2,* and Tom Michoel1,2
1Department of Plant Systems Biology, VIB and 2Department of Molecular Genetics, UGent, Technologiepark 927,
9052 Gent, Belgium

Received on July 10, 2007; revised on October 31, 2007; accepted on November 6, 2007

Advance Access publication November 22, 2007

Associate Editor: Martin Bishop

ABSTRACT

Motivation: Over the last decade, a large variety of clustering

algorithms have been developed to detect coregulatory relationships

among genes from microarray gene expression data. Model-based

clustering approaches have emerged as statistically well-grounded

methods, but the properties of these algorithms when applied to

large-scale data sets are not always well understood. An in-depth

analysis can reveal important insights about the performance of the

algorithm, the expected quality of the output clusters, and the

possibilities for extracting more relevant information out of a

particular data set.

Results: We have extended an existing algorithm for model-based

clustering of genes to simultaneously cluster genes and conditions,

and used three large compendia of gene expression data for

Saccharomyces cerevisiae to analyze its properties. The algorithm

uses a Bayesian approach and a Gibbs sampling procedure to

iteratively update the cluster assignment of each gene and condition.

For large-scale data sets, the posterior distribution is strongly

peaked on a limited number of equiprobable clusterings. A GO

annotation analysis shows that these local maxima are all biologi-

cally equally significant, and that simultaneously clustering genes

and conditions performs better than only clustering genes and

assuming independent conditions. A collection of distinct equivalent

clusterings can be summarized as a weighted graph on the set of

genes, from which we extract fuzzy, overlapping clusters using a

graph spectral method. The cores of these fuzzy clusters contain

tight sets of strongly coexpressed genes, while the overlaps exhibit

relations between genes showing only partial coexpression.

Availability: GaneSh, a Java package for coclustering, is available

under the terms of the GNU General Public License from our website

at http://bioinformatics.psb.ugent.be/software

Contact: yves.vandepeer@psb.ugent.be

Supplementary information: Supplementary data are available on

our website at http://bioinformatics.psb.ugent.be/supplementary_

data/anjos/gibbs

1 INTRODUCTION

Since the seminal paper by Eisen et al. (1998), now almost

a decade ago, clustering forms the basis for extracting

comprehensible information out of large-scale gene expression

data sets. Clusters of coexpressed genes tend to be enriched

for specific functional categories (Eisen et al., 1998), share

cis-regulatory sequences in their promoters (Tavazoie et al.,

1999) or form the building blocks for reconstructing transcrip-

tion regulatory networks (Segal et al., 2003).

A variety of heuristic clustering methods have been used, such

as hierarchical clustering (Eisen et al., 1998), k-means (Tavazoie

et al., 1999) or self-organizing maps (Tamayo et al., 1999).

Although these methods have had an enormous impact, their

statistical properties are generally not well understood and

important parameters such as the number of clusters are not

determined automatically. Therefore, there has been a shift in

attention towards model-based clustering approaches in recent

years (Dahl, 2006; Fraley and Raftery, 2002; Medvedovic

and Sivaganesan, 2002; Medvedovic et al., 2004; Qin, 2006;

Yeung et al., 2001). A model-based approach assumes that the

data is generated by a mixture of probability distributions,

one for each cluster, and takes explicitly into account the noisy-

ness of gene expression data. It allows for a statistical assessment

of the resulting clusters and gives a formal estimate for

the expected number of clusters. To infer model parameters

and cluster assignments, standard statistical techniques such

as Expectation Maximization or Gibbs sampling are used

(Liu, 2002).

In this article, we use a novel model-based clustering method

that builds upon the method recently introduced by Qin (2006).

We address two key questions that have remained largely

unanswered for model-based clustering methods in general,

namely convergence of the Gibbs sampler for very large data

sets, and non-heuristic reconstruction of gene clusters from the

posterior probability distribution of the statistical model.
In the model used by Qin (2006), it is assumed that the

expression levels of genes in one cluster are random samples

drawn from a Gaussian distribution and expression levels of

different experimental conditions are independent.We have

extended this model to allow dependencies between different

conditions in the same cluster. Medvedovic et al. (2004) used

a multivariate normal distribution to take into account corre-

lation among experimental conditions. Our approach consists of

clustering the conditions within each gene cluster, assuming

that the expression levels of the genes in one gene cluster for*To whom correspondence should be addressed.
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the conditions in one condition cluster are drawn from one
Gaussian distribution. Hence, our model is a model for
coclustering or two-way clustering of genes and conditions. The

same statistical model was also used in our recent approach to
reconstruct transcription regulatory networks (Michoel et al.,
2007). The coclustering is carried out by a Gibbs sampler that

iteratively updates the assignment of each gene, and within each
gene cluster the assignment of each experimental condition,
using the full conditional distributions of the model.

It is known that a Gibbs sampler may have poor mixing
properties if the distribution being approximated is multimodal
and it will then have a slow convergence rate (Liu, 2002).

Previous studies of Gibbs samplers for model-based clustering
have not reported convergence difficulties (Dahl, 2006;
Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004).

In those studies, only data sets with a relatively small number of
genes (upto a few 100) (Medvedovic and Sivaganesan, 2002;
Medvedovic et al., 2004), or a small number of experimental

conditions (less than 10) (Dahl, 2006) were considered, and
special sampling techniques such as reverse annealing
(Medvedovic et al., 2004) or merge–split proposals (Dahl,

2006) were sufficient to generate a well mixing Gibbs sampler.
We observe that for data sets of increasing size the correlation
between two Gibbs sampler runs as well as the number of cluster

solutions visited in one run after burn-in steadily decreases. This
means that for large-scale data sets, the posterior distribution is
very strongly peaked on multiple local modes. Since the peaks

are so strong, we approximate the posterior distribution by
averaging over multiple runs performed in parallel, each con-
verging quickly to a single mode. By computing the correlation

between different averages of the same number of runs, we are
able to show that the number of distinct modes is relatively small
and accurate approximations to the posterior distribution can

be obtained with as few as 10 modes for around 6000 genes.
To identify the final optimal clustering, the traditional

approach is to select out of all the clusterings visited by the

Gibbs sampler the one that maximizes the posterior distribu-
tion [maximum a posteriori (MAP) clustering]. However,
we show that for large data sets the differences in likelihood

between the different local maxima are extremely small and
statistically insignificant, such that the MAP clustering is
as good as taking any local maximum at random. A GO

(Ashburner et al., 2000) analysis of the different modes shows
that also from the biological point of view any difference
between the local modes is insignificant. Taking into account

the full posterior distribution is more difficult since different
clusterings may have a different number of clusters and the
labeling of clusters is not unique [the label switching problem

(Redner and Walker, 1984)]. The common solution to this
problem is to consider pairwise probabilities for two genes
being clustered together or not (Dahl, 2006; Medvedovic and

Sivaganesan, 2002; Medvedovic et al., 2004). A major question
that has not yet received a final answer is how to reconstruct
gene clusters from these pairwise probabilities. Medvedovic and

Sivaganesan (2002) and Medvedovic et al. (2004) use a heuristic
hierarchical clustering on the pairwise probability matrix to
form a final clustering estimate. Dahl (2006) introduces a least-

squares method, which selects out of all clusterings visited by
the Gibbs sampler the one which minimizes a distance function

to the pairwise probability matrix. In both approaches,

the probability matrix is reduced to a single hard clustering.

This necessarily removes non-transitive relations between genes

(such as a low probability for a pair of genes to be clustered

together even though they both have relatively high probability

to be clustered with the same third gene), which may never-

theless be informative and biologically meaningful.

We propose that the pairwise probability matrix reflects a

soft or fuzzy clustering of the data, i.e. genes can belong to

multiple clusters with a certain probability. To extract these

fuzzy clusters from the pairwise probabilities, we use a method

from pattern recognition theory (Inoue and Urahama, 1999).

This method iteratively computes the largest eigenvalue and

corresponding eigenvector of the probability matrix, constructs

a fuzzy cluster with the eigenvector, and updates the probability

matrix by removing from it the weight of the genes assigned

to the last cluster. By only keeping genes that belong to one

fuzzy cluster with very high probability, we obtain tight clusters

that show higher functional coherence compared to standard

clusters. Keeping also genes that belong with lower but still

significant probability to multiple fuzzy clusters, we can

tentatively identify multifunctional genes or relations between

genes showing only partial coexpression. We show that our

results are in good agreement with previous fuzzy clustering

approaches to gene expression data (Gasch and Eisen, 2002).

We believe that our fuzzy clustering method to summarize

the posterior distribution will be of general interest for all

model-based clustering approaches and solves the problems

associated to heuristic clusterings of the pairwise probability

matrix.

All our analyses are performed on three large-scale public

compendia of gene expression data for S. cerevisiae (Gasch

et al., 2000; Hughes et al., 2000; Spellman et al., 1998).

2 METHODS

2.1 Mathematical model

For an expression matrix with N genes and M conditions, we define a

coclustering as a partition of the genes into K gene clusters Gk, together

with for each gene cluster, a partition of the set of conditions into Lk

condition clusters Ek,l.We assume that all data points in a cocluster

{(i,m): i2Gk, m2Ek,l} are random samples from the same normal

distribution. This model generalizes the model used by Qin (2006),

where the partition of conditions is always fixed at the trivial partition

into singleton sets.

Given a set of means and precisions (�kl,�kl), a coclustering C defines

a probability density on data matrices D¼ (xim) by

p
�
ðD j C; �kl; �klÞ

�
¼
YK
k¼1

YLk

l¼1

Y
i2Gk

Y
m2Ek;l

pðxim j �kl; �klÞ:

We use a uniform prior on the set of coclusterings with normal-gamma

conjugate priors for the parameters �kl and �kl. Using Bayes’ rule we

find the probability of a coclustering C with parameters (�kl, �kl) given

the data D. Then we take the marginal probability over the parameters

(�kl, �kl) to obtain the final probability of a coclustering C given the data

D, upto a normalization constant:

pðC j DÞ /
YK
k¼1

YLk

l¼1

Z Z
pð�; �Þ

Y
i2Gk

Y
m2Ek;l

pðxim j �; �Þ d�d�; ð1Þ
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where p(�, �)¼ p(�j�)p(�) with

pð� j�Þ ¼
l0�
2�

� �1=2

e�
l0�
2 ð���0Þ

2

; pð�Þ ¼
��00
�ð�0Þ

��0�1e��0�;

�0,�0,�040 and �15�051 being the parameters of the normal-

gamma prior distribution. We use the values �0¼ �0¼�0¼ 0.1 and

�0¼ 0.0, resulting in a non-informative prior. We have compared the

normal-gamma prior with other non-informative, conjugate priors,

but found no difference in results (see Supplementary Material). The

double integral in Equation 1 can be solved exactly in terms of the

sufficient statistics T
ðnÞ
kl ¼

P
i2Gk;m2Ekl

xnimðn ¼ 0; 1; 2Þ for each cocluster.

The log-likelihood or Bayesian score decomposes as a sum of cocluster

scores:

SðCÞ ¼ log pðC j DÞ ¼
XK
k¼1

XLk

l¼1

Skl; ð2Þ

with

Skl ¼�
1

2
T

ð0Þ
kl logð2�Þ þ

1

2
log

�0

�0 þ T ð0Þ
kl

 !
� log�ð�0Þ

þ log�ð�0 þ
1

2
T

ð0Þ
kl Þ þ �0 log�0 � ð�0 þ

1

2
T

ð0Þ
kl Þ log�1

and

�1 ¼ �0 þ
1

2

h
T

ð2Þ
kl �

ðT
ð1Þ
kl Þ

2

T
ð0Þ
kl

i
þ
�0
�
T

ð1Þ
kl � �0T

ð0Þ
kl

�2
2ð�0 þ T

ð0Þ
kl ÞT

ð0Þ
kl

:

2.2 Gibbs sampler algorithm

We use a Gibbs sampler to sample coclusterings from the posterior

distribution. The algorithm iteratively updates the assignment of genes

to gene clusters, and for each gene cluster, the assignment of conditions

to condition clusters as follows:

(1) Initialization: randomly assign N genes to a random K0 number

of gene clusters, and for each cluster, randomly assign M

conditions to a random Lk,0 number of condition clusters.

(2) For N cycles, remove a random gene i from its current cluster.

For each gene cluster k, calculate the Bayesian score S(Ci!k),

where Ci!k denotes the coclustering obtained from C by

assigning gene i to cluster k, keeping all other assignments of

genes and conditions equal, as well as the probability S(Ci!0)

for the gene to be alone in its own cluster. Assign gene i to

one of the possible Kþ 1 gene clusters, where K is the current

number of gene clusters, according to the probabilities

Qk / eSðCi!kÞ normalized such that
P

k Qk¼ 1.

(3) For each gene cluster k, forM cycles, remove a random condition

m from its current cluster. For each condition cluster l, calculate

the Bayesian score S(Ck,m!l). Assign condition m to one of the

possible Lkþ 1 clusters, where Lk is the current number of

condition clusters for gene cluster k, according to the probabil-

ities Ql / eSðCk;m!lÞ normalized such that
P

l Ql¼ 1.

(4) Iterate steps 2 and 3 until convergence. One iteration is defined as

executing steps 2 and 3 consecutively once, and hence consists of

NþK�M sampling steps (with K the number of gene clusters

after step 1 of that iteration).

This coclustering algorithm simulates a Markov chain that satisfies

detailed balance with respect to the posterior distribution i.e. after

a sufficient number of iterations, the probability to visit a particular

coclustering C is given exactly by p(CjD). The expectation value of any

real function f with respect to the posterior distribution can be

approximated by averaging over the iterations of a sufficiently long

Gibbs sampler run:

EðfÞ ¼
X
C

fðCÞpðC j DÞ �
1

T

XT0þT

t¼T0þ1

fðCtÞ ð3Þ

where Ct is the coclustering visited at iteration t and T0 is a possible

burn-in period. We say that the Gibbs sampler has converged if two

runs starting from different random initializations return the same

averages for a suitable set of test functions f. More precisely, if {fn} is a

set of test functions, define an¼E1(fn) the average of fn in the first Gibbs

sampler run, and bn¼E2(fn) the average of fn in the second Gibbs

sampler run. We define a correlation measure � (0� �� 1) between two

runs as

� ¼
j
P

n anbnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

n a
2
nÞð
P

n b
2
nÞ

p : ð4Þ

Full convergence is reached if �¼ 1.

2.3 Fuzzy clustering

To keep track of the gene clusters, independent of the (varying) number

of clusters or their labeling, we consider functions

fijðCÞ ¼
1 if gene i and j belong to the same gene cluster in C

0 otherwise
ð5Þ

�

In general, the posterior distribution is not concentrated on a single

coclustering and the matrix F¼ (E(fij)) of expectation values [see

Equation (3)] consists of probabilities between 0 and 1. To quantify this

fuzzyness, we use an entropy measure

Hfuzzy ¼
1

N2 ln 2

X
ij

hðFijÞ; ð6Þ

where N is the dimension of the square matrix F and

hðqÞ ¼ �q lnðqÞ � ð1� qÞ lnð1� qÞ for 0 � q � 1:

For a hard clustering (Fij¼ 0 or 1 for all i, j), Hfuzzy¼ 0, and for a

maximally fuzzy clustering (Fij¼ 0.5 for all i, j),Hfuzzy¼ 1. In reality, the

matrix F is very sparse (most gene pairs will never be clustered

together), so Hfuzzy remains small even for real fuzzy clusterings.

We assume that a fuzzy gene–gene matrix F is produced by a fuzzy

clustering of the genes, i.e. we assume that each gene i has a probability

pik to belong to each cluster k, such that
P

k pik¼ 1. To extract

these probabilities from F we use a graph spectral method (Inoue and

Urahama, 1999), originally developed for pattern recognition and

image analysis, modified here to enforce the normalization condi-

tions on pik. A fuzzy cluster is represented by a column vector

w¼ (w1, . . . , wN)
T, with wi the weight of gene i in this cluster,

normalized such that kwk2 ¼ wTw ¼
P

i w
2
i ¼ 1 The cohesiveness

of the cluster with respect to the gene–gene matrix F is defined as

wTFw ¼
P

ijwiFijwj. By the Rayleigh–Ritz theorem,

max
w6¼0

wTFw

wTw
¼ vT1Fv1 ¼ �1;

where �1 is the largest eigenvalue of F and v1 the corresponding

(normalized) eigenvector. Hence, the maximally cohesive cluster in F is

given by the eigenvector of the largest eigenvalue. By the Perron–

Frobenius theorem, this eigenvector is unique and all its entries are non-

negative. We can then define the membership probabilities to cluster 1

by pi1 ¼ v1;i=maxjðv1;jÞ. Hence the gene with the highest weight in v1 is

considered the prototypical gene for this cluster, and it will not belong

to any other cluster. The probability pi1 measures to what extent other

genes are coexpressed with this prototypical gene. To find the next most
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cohesive cluster, we remove from F the information already contained

in the first cluster by setting

F
ð2Þ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pi1

p
Fij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pj1

p
;

and compute the largest eigenvalue and corresponding (normalized)

eigenvector v2 for this matrix. The prototypical gene for this cluster may

already have some probability assigned to the previous cluster, so we

define the membership probabilities to the second cluster by

pi2 ¼ min
� v2;i
maxjðv2;jÞ

ð1� pimax1Þ; 1� pi1

�
:

Here imax¼ arg maxj (v2,j) is the prototypical gene for the second cluster,

and we take the ‘min’ to ensure that
P

k pik will never exceed 1.

This procedure of reducing F and computing the largest eigenvalue

and corresponding eigenvector to define the next cluster membership

probabilities is iterated until one of the following stopping criteria

is met:

(1) All entries in the reduced matrix F(k) reach 0, i.e. for all genes,P
k05k pik0 ¼ 1, and we have completely determined all fuzzy

clusters and their membership probabilities.

(2) The largest eigenvalue of the reduced matrix F(k) has rank 41. In

this case the eigenvector is no longer unique and need no longer

have non-negative entries, so we cannot make new cluster

membership probabilities out of it. This may happen if the

(weighted) graph defined by connecting gene pairs with non-zero

entries in F(k) is no longer strongly connected (Perron–Frobenius

theorem).

To compute one or more of the largest eigenvalues and eigenvectors

for large sparse matrices such as F and its reductions F(k) we use

efficient sparse matrix routines, such as for instance implemented in the

Matlab� function eigs.

2.4 Data sets

We use three large compendia of gene expression data for budding

yeast:

(1) Gasch et al. (2000) data set: expression in 173 stress-related

conditions.

(2) Hughes et al. (2000) data set: compendium of expression profiles

corresponding to 300 diverse mutations and chemical treatments.

(3) Spellman et al. (1998) data set: 77 conditions for alpha factor

arrest, elutriation and arrest of a cdc15 temperature-sensitive

mutant.

We select the genes present in all three data sets (6052 genes) and, to be

as unbiased as possible, no further postprocessing is done. We use

SynTReN (Van den Bulcke et al., 2006) to generate simulated data sets

with varying number of conditions for a synthetic transcription

regulatory network with 1000 genes (see also Supplementary Material).

2.5 Functional coherence

To estimate the overall biological relevance of the clusters, we use a

method that calculates the mutual information between clusters and

GO attributes (Gibbons and Roth, 2002). For each GOslim attribute,

we create a cluster–attribute contingency table where rows are clusters

and columns are attribute status (‘Yes’) if the gene possesses the

attribute, ‘No’ if it is not known whether the gene possesses the

attribute). The total mutual information is defined as the sum of mutual

informations between clusters and individual GO attributes:

MI ¼
X
A

HðCÞ þHðAÞ �HðC;AÞ ð7Þ

where C is a clustering of the genes, A is a GO attribute and H is

Shannon’s entropy, H¼ �
P

i pilog(pi), and the pi are probabilities

obtained from the contingency tables.

3 RESULTS AND DISCUSSION

3.1 Convergence of the Gibbs sampler algorithm

We study convergence using the test functions fij, which

indicate if gene i and j are clustered together or not [see

Equation (5) in the Methods section] and compute the

correlation measure � between different runs for this set of

functions (see Equation (4) in the Methods section). In addition

to the correlation measure, we also compute the entropy

measure Hfuzzy (see Equation (6) in the Methods section). This

parameter summarizes the ‘shape’ of the posterior distribution:

a value of 0 corresponds to hard clustering that implies that the

distribution is completely supported on a single solution, the

more positive Hfuzzy is, the more the distribution is supported

on multiple solutions.
In the analysis below, we use subsets from the Gasch et al.

data set with a varying number of genes and conditions and

perform multiple Gibbs sampler runs with a large number of

iterations. One iteration involves a reassignment of all genes

and all conditions in all clusters, and hence involves NþM�K

sampling steps in the Gibbs sampler, where N is the number of

genes, M the number of conditions and K the number of

clusters at that iteration (typically K �
ffiffiffiffi
N

p
).

First we consider a very small data set (100 genes, 10

conditions). We start two Gibbs sampler runs in parallel

and compute the correlation measure � at each iteration, see

Figure 1. In this case, � approaches its maximum value �¼ 1 in

less than 5000 iterations and the Gibbs sampler generates a well

mixing chain that can easily explore the whole space. Non-zero

values of the entropy measure Hfuzzy (0.105� 0.003) indicate
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Fig. 1. Trace plot of the correlation measure � between two different

Gibbs sampler runs as a function of the number of iterations, for a

small data set (100 genes, 10 conditions, top curve) and a large data set

(1000 genes, 173 conditions, bottom curve). Both data sets are subsets

of the Gasch et al. data set.
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that the posterior distribution is supported on multiple

clusterings of the genes.

Next, we run the Gibbs sampler algorithm on a data set with
1000 genes and all 173 conditions. Unlike in the previous

situation we observe that the correlation between two Gibbs

sampler runs saturates well below 1 (see Fig. 1). Hence, the

Gibbs sampler does not converge to the posterior distribution

in one run.We can gain further understanding for the lack of

convergence by looking in more detail at a single Gibbs sampler
run. It turns out that the correlation measure between two

successive iterations reaches 1 very rapidly and remains

unchanged afterwards (see Supplementary Fig. 2). Since each

iteration involves a large number of sampling steps (i.e. a large

number of possible configuration changes), this implies that the

Gibbs sampler very rapidly finds a local maximum of the
posterior distribution from which it can no longer escape. We

conclude that the posterior distribution is supported on

multiple local maxima that overlap only partially, and with

valleys in between that cannot be crossed by the Gibbs sampler.

These local maxima all have approximately the same log-

likelihood (see for instance the small variance in Fig. 4 below)
and are therefore all equally meaningful. The probability ratio

between peaks and valleys is so large (exponential in the size of

the data set) that an accurate approximation to the posterior

distribution is given by averaging over the local maxima only.

Those can be uncovered by performing multiple independent

runs, each converging very quickly on one of the maxima, and
there is no need for special techniques to also sample in between

local maxima. The number of local maxima (Gibbs sampler

runs) necessary for a good approximation can be estimated as

follows. We perform 150 independent Gibbs sampler runs and

compute for each the pairwise gene–gene clustering probability

matrix F (see Methods section). For each k¼ 1, . . . , 50, we take
two non-overlapping sets of k solutions and compute the

average of their pairwise probability matrices F. Then, we

compute the correlation measure � between those two averages.

This is repeated several times, depending on the number of

non-overlapping sets that can be chosen from the pool of

150 solutions. If for a given k the correlation is always 1, then

there are at most k local maxima. Figure 2 shows that as k

increases, the correlation quickly reaches close to this perfect

value 1. This implies that the number of local maxima is not too

large and a good approximation to the posterior distribution

can be obtained in this case already with 10 to 20 solutions.

Supplementary Figure 1 shows an example of hard clusters

formed as a result of a single run and fuzzy clusters formed

by merging the result of 10 independent runs.

In Figure 3, we keep the same 1000 genes and select an

increasing number of conditions. As the data set increases, the

entropy measure Hfuzzy decreases, meaning the clusters become

increasingly hard. Simultaneously, the correlation measure �
decreases from about 0.85 to 0.55 (see Supplementary Fig. 3).

We conclude that the depth of the valleys between different

local maxima of the posterior distribution increases with the

size of the data set, and it becomes increasingly more difficult

for the Gibbs sampler to escape from these maxima and visit

the whole space in one run.

3.2 Analysis of whole genome data sets

If we run the Gibbs sampler algorithm on the three whole

genome yeast data sets, we are in the situation where

the algorithm very rapidly gets stuck in a local maximum. In

Figure 4, we plot the average Bayesian log-likelihood score

[see Equation (2) in the Methods section] for 10 different Gibbs

sampler runs for the Spellman et al. data set. The rapid

convergence of the log-likelihood shows that the Gibbs sampler

reaches the local maxima very quickly and the low variance

shows that the different local maxima are all equally likely.

The average over 10 runs of the GO mutual information score

(see Equations (7) in the Methods section) shows the same rapid

convergence and small variance (see Supplementary Fig. 6),

implying that the different maxima are biologically equally

meaningful according to this score. The correlation between

different averages of 10 Gibbs sampler runs reaches 0.85, a value

we consider high enough for a good approximation of the
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Fig. 2. Correlation measure � between different averages of the same

number of local maxima for a data set of 1000 genes and 173 conditions

(subset of the Gasch et al. data set).
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Fig. 3. Entropy measure Hfuzzy for data sets with 1000 genes and

varying number of conditions (subsets of the Gasch et al. data set).
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posterior distribution.The other two data sets show precisely the

same behavior (see Supplementary Figs 4 and 5).

3.3 Two-way clustering versus one-way clustering

Our coclustering algorithm extends the CRC algorithm of Qin

(2006) by also clustering the conditions for each cluster of genes

(‘two-way clustering’), instead of assuming they are always

independent (‘one-way clustering’). We compare the clustering

of genes for the three yeast data sets using both methods, by

computing the average number of clusters inferred (K), the

average log-likelihood score and the average GO mutual

information score for 10 independent runs of each algorithm.

The results are tabulated in Tables 1 and 2. For all three data

sets, both the log-likelihood score and the GO mutual

information score are higher (better) for our method. The

increase in GO mutual information score is especially

significant in case of the Hughes et al. data set. This data set

has very few overexpressed or repressed values and if each

condition is considered independent, there are very few distinct

profiles that result in the formation of very few clusters

(�15 for 6052 genes). Also clustering the conditions gives more

meaningful results since differentially expressed conditions

form separate clusters from one large background cluster of

non-differentially expressed conditions.
For simulated data sets, clusters are defined as sets of genes

sharing the same regulators in the synthetic regulatory network,

and the true number of clusters is known. Here, we consider a

gene network whose topology is subsampled from an

Escherichia coli transcriptional network (Van den Bulcke

et al., 2006) with 1000 genes, of which 105 transcription

factors, and 286 clusters. For two-way clustering, as we increase

the number of conditions in the simulated data set, more

clusters are formed and the number of clusters saturates close

to the true number (see Fig. 5). For one-way clustering,

addition of conditions does not affect the inferred number of

clusters which is anorder of magnitude smaller than the true

number (see Fig. 5). For two-way clustering, due to the

clustering of conditions, the number of model parameters is

reduced, and greater statistical accuracy can be achieved, even

when the number of genes in a cluster becomes small. The

correlation measure � between true clusters and inferred

clusters also shows ahigher value for two-way clustering over

one-way (see Supplementary Fig. 8).
Unlike for simulated data sets, the inferred number of

clusters does not depend much upon the number of conditions

for real biological data sets (see Supplementary Fig. 7), i.e. even

if more conditions are added, the algorithm does not generate

more clusters. This is because in simulated data, every addition

of a condition adds new information, but for real data sets that

might not be the case. In order to get the true clusters from the

expression data, we do not only need more conditions but also
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Fig. 4. Trace plot of the average log-likelihood score and SD for 10

Gibbs sampler runs for the Spellman et al. data set.

Table 1. One-way clustering, averages for 10 different Gibbs sampler

runs

Data set Average K Average log-likelihood

score

Average MI

Gasch et al. 52.9 (2.6) �6.101 (0.014) � 105 1.771 (0.031)

Hughes et al. 14.9 (0.5) 2.530 (0.002) � 106 0.588 (0.044)

Spellman et al. 49.7 (2.2) �7.183 (0.037) � 104 1.491 (0.032

Table 2. Two-way clustering, averages for 10 different Gibbs sampler

runs

Data set Average K Average log-likelihood

score

Average MI

Gasch et al. 84.5 (2.5) �5.586 (0.012)� 105 1.912 (0.033)

Hughes et al. 85.5 (2.7) 2.798 (0.004)� 106 1.511 (0.045)

Spellman et al. 65.4 (4.2) �5.112 (0.011)� 104 1.612 (0.032)
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Fig. 5. Number of gene clusters for a simulated data set with 1000 genes

and a varying number of conditions, for two-way clustering [top data

points (�)] and one-way clustering [bottom data points (þ )].
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that each new condition contributes information different from

the information already available from the previous conditions.

This might be a reason why the algorithm clusters 6052 genes in

only �80 clusters (see Table 2).

3.4 Fuzzy clusters

Our algorithm returns a summary of the posterior distribution

in the form of a gene–gene matrix whose entries are the

probabilities that a pair of genes is clustered together. To

convert these pairwise probabilities back to clusters, we use a

graph spectral method as explained in the Methods section. The

method produces fuzzy overlapping clusters, where each gene i

belongs to each fuzzy cluster k with a probability pik, such thatP
k pik¼ 1. The size of a fuzzy cluster k is defined as

P
i pik. The

algorithm iteratively produces new fuzzy clusters until all the

information in the pairwise matrix is converted into clusters

(first stopping criterium, see Methods section), or until the

mathematical conditions underlying the algorithm cease to hold

(second stopping criterium, see Methods section). We applied

the algorithm to pairwise probability matrices for each of the

three data sets, obtained by averaging over 10 different Gibbs

sampler runs. For the Gasch et al. and Hughes et al. data sets,

full fuzzy clustering is achieved with 500 fuzzy clusters (all 6052

genes have total assignment probability
P

k pik40.98). For the

spellman et al. data set, the second stopping criterium is met

after producing 321 fuzzy clusters
In general, we observe that the algorithm first produces

one very large fuzzy cluster corresponding to an average

expression profile that almost all genes can relate to. This

cluster is of no interest for further analysis. Then, it produces

a number of fuzzy clustersof varying size, which show interest-

ing coexpression profiles and are useful for further analysis.

For the three data sets considered here, this number is

around 100, consistent with the average number of clusters in

different Gibbs sampler runs (see Table 2). The remaining fuzzy

clusters are typically very small and consist mostly of noise.

Like the very first cluster, they are of no interest for further

analysis.
Since every gene belongs to every cluster, we use a proba-

bility cutoff to remove from each cluster the genes that belong

to it with a very small probability. The smaller the cutoff, the

more genes belong to a cluster, which results into more fuzzy

clusters and vice versa. Table 3 shows the total number of genes

assigned to at least one fuzzy cluster with different cutoff values

and in brackets the number of genes assigned to at least two

fuzzy clusters.

The goal of merging different Gibbs sampler solutions and

forming fuzzy clusters is to extract additional information out

of a data set that is not captured by a single hard clustering

solution. This can be achieved in two ways. First, by obtaining

tight clusters of few but highly coexpressed genes with a high

probability cutoff. Second, by characterizing genes that belong
to multiple clusters with a significant probability.

For all three data sets, at a probability cutoff of 0.5, we get a

subset of genes that belong to only one cluster with high
probability. Table 3 shows that each data set retains at least

20% of its genes. These are sets of strongly coexpressed genes

that cluster together in almost every hard cluster solution.

Ribosomal genes show such a strong coexpression pattern in all

the three data sets where most genes belong to this cluster with
a probability close to 1 (see Fig. 6). At least 75% of all the genes

in cluster 2 (Gasch et al., data), cluster 3 (Hughes et al., data)

and cluster 2 (Spellman et al., data) are located in ribosome.
Local but very strong coexpression patterns can also be

detected by our method. Cluster 15 of the Gasch et al. data set

consists of only 4 genes clustered together with probability 1

(see Fig. 7). These four genes, GAL1, GAL2, GAL7 and

GAL10, are enzymes in the galactose catabolic pathway and

respond to different carbon sources during steady state. They
are strongly upregulated when galactose is used as a carbon

source (second experiment cluster in Fig. 7) and strongly

downregulated with any other sugar as a carbon source

(first experiment cluster in Fig. 7). In every hard cluster

solution, these 4 genes are clustered together along with other
genes. By merging these hard cluster solutions to form fuzzy

clusters, we get a tight but more meaningful cluster with only

4 genes.
Table 3 shows that many genes belong to two or more

clusters with a significant probability. For the Gasch et al. data

set, we find similar observations as in Gasch and Eisen (2002).

Cluster 27 contains genes localized in endoplasmic reticulum

(ER) and induced under dithiothreitol (DTT) stress like FKB2,

JEM1, ERD2, ERP1, ERP2, RET2, RET3, SEC13, SEC21,
SEC24 and others. Cluster 34 contains genes repressed under

nitrogen stress and stationary state. Twenty percent of the

genes in cluster 27 also belong to cluster 34 with a significant

membership. These include genes encoding for ER vesicle coat

Fig. 6. Ribosomal genes form a tight cluster in the Hughes et al. data

set. (Due to space constraints only the first few genes are shown; for the

complete figure, see the Supplementary Material.)

Table 3. Number of genes clustered and number of genes belonging to

multiple clusters with different membership probability cutoff values

Data set 0.1 0.3 0.5

Gasch et al. 6045 (4356) 4062 (344) 1781 (0)

Hughes et al. 6052 (4554) 3959 (34) 2254 (0)

Spellman et al. 6052 (5187) 3158 (139) 1255 (0)

Fig. 7. Fourgenes GAL1, GAL2, GAL7 and GAL10 form a tight

cluster showing conditional coexpression in the Gasch et al. data set.
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proteins like RET2, RET3, SEC13 and others that are induced

under DTT stress as well as repressed under nitrogen stress and

stationary state. Also RIO1, an essential serine kinase, belongs

to two clusters with a significant probability. It clusters with

genes involved in ribosomal biogenesis and assembly (Gasch

et al., data cluster 3) as well as with genes functioning as

generators of precursor metabolites and energy (Gasch et al.,

data cluster 7). We find similar observations for the Hughes

et al. and Spellman et al. data sets. Genes CLN1, CLN2 and

other DNA synthesis genes like CLB6, which are known to be

regulated by SBF during S1 phase (Koch et al., 1996) belong

to cluster 19 (Spellman et al., data). They also belong with

significant probability to cluster 4 (Spellman et al., data).

More than one-third of the genes in cluster 4 are predicted to be

cell-cycle regulated genes.

4 CONCLUSION

We have developed an algorithm to simultaneously cluster

genes and conditions and sample such coclusterings from a

Bayesian probabilistic model. For large data sets, the model is

supported on multiple equivalent local maxima. The average

of these local maxima can be represented by a matrix of pair-

wise gene–gene clustering probabilities and we have introd-

uced a new method for extracting fuzzy, overlapping clusters

from this matrix. This method is able to extract information

out of the data set that is not available from a single, hard

clustering.

ACKNOWLEDGEMENTS

We thank Steven Maere and Vanessa Vermeirssen for helpful

discussions. Early Stage Marie Curie Fellowship to A.J.;

Postdoctoral Fellowship of the Research Foundation

Flanders (Belgium) to T.M.

Conflict of Interest: none declared.

REFERENCES

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

The Gene Ontology Consortium. Nat. Genet., 25, 25–29.

Dahl,D.B. (2006) Model-based clustering for expression data viaa Dirichlet

process mixture model. In Do,K.-A. et al. (eds.) Bayesian inference for gene

expression and proteomics. Cambridge University Press, New York,

pp. 201–218.

Eisen,M.B. et al. (1998) Cluster analysis and display of genome-wide expression

patterns. Proc. Natl Acad. Sci. USA., 95, 14863–14868.

Fraley,C. and Raftery,A.E. (2002) Model-based clustering, discriminant analysis,

and density estimation. J. Am. Stat. Assoc., 97, 611–631.

Gasch,A.P. and Eisen,M.B. (2002) Exploring the conditional coregulation of

yeast gene expression through fuzzy k-means clustering. Genome Biol, 3,

RESEARCH0049.

Gasch,A.P. et al. (2000) Genomic expression programs in the response of yeast

cells to environmental changes. Mol. Biol. Cell, 11, 4241–4257.

Gibbons,F.D. and Roth,F.P. (2002) Judging the quality of gene expression-based

clustering methods using gene annotation. Genome Res., 12, 1574–1581.

Hughes,T.R. et al. (2000) Functional discovery via a compendium of expression

profiles. Cell, 102, 109–126.

Inoue,K. and Urahama,K. (1999) Sequential fuzzy cluster extraction by a graph

spectral method. Pattern Recognit. Lett., 20, 699–705.

Koch,C. et al. (1996) Switching transcription on and off during the yeast cell

cycle: ClnCdc28 kinases activate bound transcription factor SBF Swi4/Swi6 at

start, whereas Clb/Cdc28 kinases displace it from the promoter in G2. Genes

Dev., 10, 129–141.

Liu,J.S. (2002) Monte Carlo Strategies in Scientific Computing. Springer, New

York.

Medvedovic,M. and Sivaganesan,S. (2002) Bayesian infinite mixture model based

clustering of gene expression profiles. Bioinformatics, 18, 1194–1206.

Medvedovic,M. et al. (2004) Bayesian mixture model based clustering of

replicated microarray data. Bioinformatics, 20, 1222–1232.

Michoel,T. et al. (2007) Validating module network learning algorithms using

simulated data. BMC Bioinformatics, 8 (Suppl. 2), S5.

Qin,Z.S. (2006) Clustering microarray gene expression data using weighted

Chinese restaurant process. Bioinformatics, 22, 1988–1997.

Redner,R.A. and Walker,H.F. (1984) Mixture densities, maximum likelihood,

and the EM algorithm. SIAM Review, 26, 195–239.

Segal,E. et al. (2003) Module networks: identifying regulatory modules and their

condition-specific regulators from gene expression data. Nat. Genet., 34,

166–167.

Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated

genes of the yeast Saccharomyces cerevisiae by microarray hybridization.

Mol. Biol. Cell, 9, 3273–3297.

Tamayo,P. et al. (1999) Interpreting patterns of gene expression with self-

organizing maps: methods and application to hematopoietic differentiation.

Proc. Natl Acad. Sci. USA., 96, 2907–2912.

Tavazoie,S. et al. (1999) Systematic determination of genetic network architec-

ture. Nat. Genet., 22, 281–285.

Van den Bulcke,T. et al. (2006) SynTReN: a generator of synthetic gene

expression data for design and analysis of structure learning algorithms.

BMC Bioinformatics, 7, 43.

Yeung,K.Y. et al. (2001) Model-based clustering and data transformations for

gene expression data. Bioinformatics, 17, 977–987.

Gibbs sampler method for model-based clustering

183


