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Abstract—Query-based biclustering can be used to explore
public gene expression data for genes coexpressed with genes
of interest to a certain researcher (the query). These methods,
however, fail when faced with a list of query-genes with diverse
expression profiles. In addition, a threshold on the minimal
coexpression with the query-genes needs to be defined in
advance. To deal with these problems we introduce an ensemble
approach for query-based biclustering. The method relies on a
specifically designed consensus matrix in which the biclustering
outcomes for multiple query-genes and for different possible
coexpression thresholds are merged in a statistically robust way.
Graph clustering is used to obtain non-redundant consensus
biclusters from this matrix. We tested out different ensemble
construction schemes and illustrate the effectiveness of this
approach.
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I. INTRODUCTION

Interpreting results of experimental assays in light of the
increasing amount of publicly available gene expression data
can help revealing inconsistencies between own experiments
and available data. In addition, such a comparison allows
viewing experimental results in the more global context
of the cell unveiled by the global expression data. Query-
based search strategies, such as prioritization methods [1]—
[3] and query-based biclustering methods [4], [5], have been
developed to query gene expression compendia for genes
tightly coexpressed with gene(s) of interest and therefore can
be potentially used to this purpose. Applying query-based
methods to search for gene coexpressed with genes from an
experimental list, leads however to tedious post-processing
and difficult interpretation of the results.

First, experimentally derived query-sets are often het-
erogeneous in their expression profiles. As existing query-
based tools generally query the expression compendium with
the average expression profile of the query-set, query-based
biclustering must be applied to each gene from the query-
list separately to avoid the query-profile to be deteriorated by
query-genes that are not mutually coexpressed. Some of the
query-genes might, however, still be coexpressed since they
are derived from the same experimental assay. Therefore
this procedure often results in at least partially redundant
biclustering solutions.
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A second issue concerns defining a threshold on the
minimal level of coexpression of additionally recruited genes
with the query. Indeed, as it is often not a priori known
how tightly a set of genes should be coexpressed to be
biologically meaningful, several query-based biclustering
methods [4], [5] avoid hard thresholding and incorporate
a resolution sweep approach in which a whole range of
possible threshold values is scanned in one algorithmic run.
This, however, requires the user to select the most relevant
solution a posteriori.

Consequently, when existing query-based strategies are
applied to explore expression compendia for genes coex-
pressed with experimentally derived gene sets, these prob-
lems require the user to scan lots of potentially redundant
query-based biclustering results obtained for many possible
thresholds on coexpression. Here we introduce an ensemble
strategy [6], [7] to merge multiple query-based biclustering
results obtained for a whole range of different thresholds into
a few non-redundant consensus biclusters, which allows for
easy interpretation of the query-list within the context of the
gene expression compendium.

II. MATERIALS AND METHODS
A. Datasets

An Escherichia coli cross-platform gene expression com-
pendium containing 4557 genes and 870 conditions derived
from publicly available gene expression data was used [8].
A query-list was obtained from an E. coli FNR ChIP-chip
experiment [9]. In this experiment 63 genomic regions bound
by FNR were identified, which were mapped to 90 genes.
Gene functional GO-categories were taken from EcoCyc
[10].

B. Query-driven biclustering

The strategy proposed in this paper can be used in
conjunction with any query-based strategy. For illustrative
purposes we use here query-driven biclustering (QDB) [5].
Briefly, QDB takes as input one or multiple query-genes and
a gene expression data set and outputs a bicluster solution
centered on the average expression profile of the query-
genes. The algorithm uses a resolution sweep approach to
evaluate in a single run of the algorithm all possible solutions
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Figure 1. Overview of the computational framework. n4qp, targets from a
ChIP-chip analysis were each taken as input of a query-driven biclustering
algorithm (QDB) [5]. Each QDB-run outputs the results for a single ChIP-
chip target and consists of a gene score matrix and condition score matrix. G
refers to the dataset’s genes, C' to the conditions and Res to the resolution
parameters. The global consensus matrix (CM) construction is a two-step
procedure in which first a gene-specific consensus matrix is constructed for
each query, resolving the resolution issue. In a second step the gene-specific
consensus matrices for all ngq, genes in the ChIP-chip list are merged
into a single global consensus matrix, to remove redundancy amongst
QDB-outcomes (shades of grey are representative of the magnitude of the
consensus scores). Finally, this global consensus matrix is clustered and the
corresponding conditions are retrieved from the condition score matrices,
resulting in consensus biclusters.

that correspond to different degrees of coexpression (i.e. the
resolution), first outputting bicluster solutions with only a
limited number of genes that are all tightly coexpressed with
the query-profile and then gradually adding genes that are
less tightly coexpressed with the query. In this work, a single
run of the algorithm outputs the results for a specific query-
gene and consists of two matrices: the gene score matrix and
condition score matrix (Figure 1). These matrices contain for
each resolution (Res) the loglikelihood ratio of the genes
(gene scores G's;) and conditions (condition scores C's;)
belonging to the bicluster (hence for each resolution a gene
score vector and condition score vector is obtained). We refer
to the output of such a single run as the “QDB-outcome”.
Here, as is motivated in Introduction, we run QDB on all
ngqp genes from the query-list separately, generating an
ensemble of QDB-outcomes.

C. An ensemble strategy for query-based biclustering

The computational framework to derive a consensus so-
lution for the ensemble of QDB-outcomes is outlined in
Figure 1. We first focus on generating a consensus in the
gene direction before retrieving the relevant conditions.
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1) Global consensus matrix construction: The global
consensus matrix is a gene-by-gene matrix containing con-
sensus scores Cj;. These scores approximate the similarity
between two genes by calculating the frequency of co-
occurrence of these genes across all ng,q, QDB-runs. We
follow a two-step procedure to construct the consensus
matrix.

In the first step we resolve the resolution issue. Specifi-
cally, we construct a gene-specific consensus matrix which
merges the results for separate QDB-runs, each obtained
for a single query-gene and for n,., different values of the
resolution parameter. Matrix entries reflect the average gene

pair-to-bicluster membership across all resolutions tested:
Nres Nres
qub_z Gs; .st
ij

genes that co-T(L)TceéSur in both fine-grained and coarser-grained
biclusters (corresponding to a decreasing tightness of coex-
pression) get a higher consensus score than genes that only
co-occur in coarser-grained biclusters.

In the second step, a global consensus matrix, which
aggregates all the gene-specific consensus matrices for the
different query-genes, is constructed. Here, we remove the
redundancy amongst the QDB-outcomes by assuming that
genes that co-occur repeatedly across different QDB-runs
form a single grouping. However, as not all query-genes
give rise to similar QDB-outcomes, we do not only aim to
reduce the redundancy amongst the gene sets but also to pre-
serve the QDB-outcomes that were not repeatedly retrieved
for different query-genes (i.e the non-redundant outcomes).
Therefore, we introduce a distributed consensus matrix
construction approach. Here, the frequency of co-occurrence
for a gene-pair (gene consensus score) is calculated as its
sum over all gene-specific consensus matrices, accounting
for the number of times a certain gene pair co-occurred in the
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with O(C}**, C’;Lq‘“) representing the co-occurrence func-
tion which is 1 if both genes belong to the same specific
consensus matrix and otherwise 0. Simply averaging the
gene-specific matrices across all QDB-solutions would er-
roneously downweigh those genepairs specific to a certain
QDB-run and reward genepairs retrieved by all QDB-runs.

We also tested two consensus matrix transformations to
see whether we could further improve upon the ensemble
solution. The first transformation concerns the Topological
Overlap Matrix (TOM) [11] which does not only account
for pairwise gene-gene co-occurrence but also for similarity
in the other genes with which both genes co-occur in the
QDB-solutions. For the second transformation we tested
whether pruning the consensus matrix could improve the
outcome. To this end we used the disparity filter [12] to
put statistically insignificant consensus scores to zero. We

. The rationale behind this is that

. . lobal
specific consensus matrices: C}/;*"



choose our significance level for the disparity filter such
that 90% of the total consensus score (i.e. the sum of all
consensus scores) was retained as to not eliminate too many
elements with large consensus scores from the matrix.

2) Extracting consensus clusters from the consensus ma-
trix: To obtain non non-redundant gene consensus clusters
we cluster the global consensus matrix. In particular, as the
global consensus matrix can be considered as a weighted
graph, with weights corresponding to the consensus scores,
we compared several graph clustering methods that can be
applied for this purpose. These methods include the Newman
spectral modularity algorithm [13], affinity propagation (AP)
[14], Markov clustering (MCL) [15] hierarchical clustering
and a recently published fuzzy spectral graph clustering
method [16].

The Newman spectral modularity algorithm and the fuzzy
spectral method select automatically the number of clus-
ters. For AP we use the default parameters, for MCL
the efficiency measure [15] and for hierarchical clustering
the silhouette coefficient to select the optimal number of
clusters.

We refer to the whole set of consensus clusters obtained
from the consensus matrix as the “consensus solution”. For
each of the graph clustering methods, gene consensus clus-
ters not containing any of the genes included in the query-list
were discarded, as they were of no further relevance to the
study.

3) Constructing consensus biclusters by retrieving the
relevant conditions: To map the conditions to the gene con-
sensus clusters, we trace back the obtained gene consensus
clusters to the original QDB-outcomes from which they were
derived. Specifically, we use the geometric coefficient [17]
to quantify for a gene consensus cluster its overlap in its
genes with each of the the QDB-outcomes: Ouerlap =
G eonsNGyanl with Gons representing the genes in the

vV ‘Gcons ‘ ‘qubl ’

consensus cluster and Gyqp the genes in the QDB-bicluster.
Since, each QDB-outcome corresponds to different gene sets
retrieved for different values of the resolution parameter,
the overlap is calculated for each resolution separately. The
condition score vector that corresponds to the resolution for
which this overlap is maximized is then retained. Next, the
condition consensus scores for a particular gene consensus
cluster are calculated as the weighted mean of all condition
score vectors (one per QDB-outcome) retained for this con-
sensus cluster. The weight is chosen equal to the geometric
coefficient, hence giving higher weight to condition score
vectors belonging to QDB-outcomes better reflected by the
gene consensus clusters. Finally conditions with a consensus
score exceeding 0.75 (conditions occur in at least 75% of
the condition score vectors) are retained.

D. Performance evaluation

To evaluate the performance of the obtained consensus
biclusters for the different consensus matrix transformations
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and graph clustering methods we define the following evalu-
ation metrics which assess different aspects of the ensemble
framework:

1) The overlap measure evaluates the agreement with
original QDB-outcomes by calculating for each con-
sensus cluster its maximal overlap with the original
QDB-outcome as measured by the geometric coeffi-
cient (see above).

The redundancy measure evaluates the extent to which
redundancy is removed from the origingal QDB-
outcomes. Ideally query-genes with similar (i.e. re-
dundant) QDB-outcomes should end up in the same
consensus cluster. Therefore we compare a clustering
of the query-genes based on their similarity in QDB-
outcomes (overlap in gene content as assessed by
geometric coefficient is used as similarity measure)
with the clustering of the query-genes in the consensus
solution. We use the Normalized Mutual Information
(NMI) [7] to quantify the extent to which both cluster-
ings of the query-genes (i.e. based on QDB-outcome
and based on consensus solution) are the same.

The functional coherency evaluates the biological rele-
vance of the consensus clusters. We calculate for each
consensus cluster the functional coherence using the
hypergeometric test (p < 0.01, Bonferroni-corrected
for multiple testing). We use the clustering score
function [18] to aggregate all p-values into one score
obtained for a certain consensus clustering: let n, be
the number of significantly enriched clusters and n;
the number of insignificant clusters for a p-value cut-
off ¢, then the functignal coherence of a consensus

s
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The modularity [19] assesse; ?ﬁz:cstatistical quality of
the consensus clusters by comparing the fraction of
the edges that fall within a given cluster minus the
expected fraction if edges were distributed at random.
The higher the modularity the better the cluster sepa-
ration.

2)

3)

4)

All metrics have a maximal value of 1, which makes their
interpretation straightforward.

IITI. RESULTS

Here we apply our ensemble framework for query-based
biclustering to a query-list of 90 FNR ChIP-chip targets
in E. coli [9]. We first generate an ensemble of query-
based biclustering solutions by running QDB [5] for each
gene from the query-list separately on an E. coli gene
expression compendium [8]. This results in 44 query-driven
biclustering solutions (not for all query-genes a solution
could be obtained) that at least partially overlap: 23/44
QDB-outcomes show an overlap of at least 50% (geometric
coefficient) with at least one other QDB-outcome. To remove
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Figure 2.  Comparison of different consensus constructions. Each bar
corresponds to a different consensus matrix transformation ("Normal’ refers
to no transformation). Bars are grouped per clustering method (x-axis).

Table I
COMPARISON OF CONSENSUS CONSTRUCTIONS FOR DIFFERENT GRAPH
CLUSTERING METHODS, ON THE PRUNED CONSENSUS MATRIX

AP~ MCL Fuzzy Hierarch Newman
Overlap 0.70  0.63 0.70 0.58 0.72
Redundancy 0.82  0.71 0.84 0.77 0.74
Func coherency 0.23  0.24 0.16 0.23 0
Modularity 041  0.54 0.64 0.66 0.61

the redundancy amongst the QDB-outcomes we apply the
proposed ensemble approach. As such the 44 bicluster solu-
tions are merged into 4 to 21 consensus biclusters, depending
on the combination of consensus matrix transformation and
the graph clustering method used.

A. Validation ensemble approach

In Figure 2 we evaluate the different consensus matrix
constructions and graph clustering methods using the evalu-
ation metrics introduced in Materials and Methods. For each
combination of consensus matrix transformation and graph
clustering we define a cumulative score as the sum of the 4
performance measures introduced above. These cumulative
scores are represented as stacked bar graphs in Figure 2 and
allow for the comparison of different consensus constructs.
As each evaluation metric has a maximal value of 1, the
maximal value for the cumulative score is 4.

First, with respect to the consensus matrix transformation
used, we observe that pruning the consensus matrix improves
for all graph clustering methods the cumulative score of
all evaluation metrics (Figure 2). The fact that a better
cumulative score is obtained than for the non-transformed
consensus matrix illustrates that putting non-significant con-
sensus scores to zero before clustering the consensus matrix
results in consensus biclusters that better represent the
original QDB-outcomes (higher *Overlap-score’). Applying
TOM, on the other hand, seems to disturb the relation of
the consensus solution to the original QDB-oucomes as
indicated by the low overlap and low redundancy measures.

Secondly, we observe that for the pruned consensus ma-
trix fuzzy clustering outperforms the other graph clustering
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Table II
INTERPRETATION CHIP-CHIP TARGETS IN TERMS OF CONSENSUS
BICLUSTER CONTENT

In interesting bicluster
In consensus | enrich coverage
Novel target 37 7 8
Known target 24 17 20
Total 61 24 28

methods with respect to agreement with the original QDB-
solutions. Indeed, having on average an overlap of 70%
with the original QDB-outcomes and a redundancy score of
0.84, the results obtained by fuzzy clustering on the pruned
consensus matrix seem to be truthful to the original QDB-
outcomes (Table I). AP performs similarly for these metrics
but fuzzy clustering outperforms AP w.r.t. cluster coherency
as assessed by the modularity measure.

B. Biological interpretation consensus biclusters

Being a high-throughput technology, ChIP-chip data in-
evitably gives rise to false positives. In addition, the tech-
nology fails to distinguish non-functional from functional
binding. Hence ChIP-chip experiments need to be backed
up by expression data that provide information on whether
the identified target genes are indeed being regulated by
the bound transcription factor (TF). Here we interpret the
outcome of the ChIP-chip assay [9] in terms of the obtained
consensus biclusters. We choose the results obtained with
fuzzy clustering on the pruned consensus matrix as for this
combination the best performance was observed (see above).
Here the 44 QDB-outcomes were merged into 17 consensus
biclusters that cover 61 of the 90 ChIP-chip targets, amongst
which 24 known FNR targets [20] (Table II - ‘In consensus’).

To get a sense of reliability of the output of the ChIP-
chip assay we assessed (1) whether ChIP-chip targets are
mutually coexpressed (or co-cluster) and (2) whether they
are coexpressed (co-cluster) with known FNR-targets. As
for (1) we could identify 2 consensus biclusters with a
significant enrichment for ChIP-chip targets (p < 0.05, hy-
pergeometric test, Bonferroni-corrected). These 2 consensus
biclusters contain in total 24 ChIP-chip targets of which
17 are documented to be regulated by FNR [20], whereas
the 7 remaining targets are novel FNR targets identified by
the ChIP-chip assay (Table II - ‘enrich’). As these ChIP-
chip targets are not only bound by the same TF but also
coexpressed they are likely functional FNR-targets. Regard-
ing (2), we observed that 6 consensus biclusters showed a
high coverage for known FNR-targets (i.e. > 33% of the
genes within these biclusters were known FNR-targets [20]),
including the 2 biclusters that were significantly enriched in
the ChIP-chip list. These 6 consensus biclusters contained
in total 28 ChIP-chip targets, of which 20 are documented
FNR-targets (Table II - ‘coverage’) and 8 are novel ones.

Through this analysis we can confirm 20 out of the 24



ChIP-chip targets that are known to be regulated by FNR
[20]) and for which we could retrieve a consensus bicluster
(Table II), illustrating that we identify true positives of the
assay with a high sensitivity.

IV. DISCUSSION AND CONCLUSION

In this paper we tackled the problems that query-based
search methods are confronted with when faced with a list
of experimentally derived genes by introducing an ensemble
method for query-based biclustering.

This ensemble method deals with the biological resolution
issue by stressing genes that are repeatedly retrieved for mul-
tiple resolutions. In addition it copes with the heterogeneity
of the input list by employing a “split and merge strategy”:
we first derive query-based biclustering solutions for each
query-gene separately and then merge the partially redundant
solutions in a consensus solution, which retains the distinct
solutions amongst the ensemble of query-based biclustering
solutions. Whereas ensemble methods have traditionally
been used to enforce robustness and increase accuracy of
clustering results [6], [7], here we applied it in a novel way:
we introduced a distributed consensus matrix approach to
remove redundancy and to simultaneously retain as much
information as possible of the original QDB-solutions.

Using different evaluation metrics and comparing different
ways of constructing the ensemble it was illustrated that con-
sensus biclusters can be obtained that are in good agreement
with the original bicluster solutions.
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