
A Greedy, Graph-Based Algorithm for the Alignment of

Multiple Homologous Gene Lists

Jan Fostier 1,∗ , Sebastian Proost 2,3,∗, Bart Dhoedt 1, Yvan Saeys 2,3,
Piet Demeester 1, Yves Van de Peer 2,3,† and Klaas Vandepoele 2,3

1Department of Information Technology (INTEC), Ghent University, Gaston Crommenlaan 8,

bus 201, Ghent, Belgium.
2Department of Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium.
3Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, Ghent,

Belgium.

ABSTRACT

Motivation: Many comparative genomics studies rely on the cor-

rect identification of homologous genomic regions using accurate

alignment tools. In such case, the alphabet of the input sequences

consists of complete genes, rather than nucleotides or amino acids.

As optimal multiple sequence alignment is computationally imprac-

tical, a progressive alignment strategy is often employed. However,

such an approach is susceptible to the propagation of alignment

errors in early pairwise alignment steps, especially when dealing

with strongly diverged genomic regions. In this paper, we present a

novel accurate and efficient greedy, graph-based algorithm for the ali-

gnment of multiple homologous genomic segments, represented as

ordered gene lists.

Results: Based on provable properties of the graph structure, several

heuristics are developed to resolve local alignment conflicts that occur

due to gene duplication and/or rearrangement events on the different

genomic segments. The performance of the algorithm is assessed by

comparing the alignment results of homologous genomic segments

in Arabidopsis thaliana to those obtained by using both a progres-

sive alignment method and an earlier graph-based implementation.

Especially for datasets that contain strongly diverged segments, the

proposed method achieves a substantially higher alignment accuracy,

and proves to be sufficiently fast for large datasets including a few

dozens of eukaryotic genomes.

Availability: http://bioinformatics.psb.ugent.be/software. The algo-

rithm is implemented as a part of the i-ADHoRe 3.0 package.

Contact: yves.vandepeer@psb.vib-ugent.be

1 INTRODUCTION

In the past decades, considerable effort has been devoted to the deve-

lopment of algorithms for the alignment of biological sequences at

the nucleotide or amino acid level. Using dynamic programming

techniques, optimal pairwise global (Needleman and Wunsch, 1970)

∗Contributed equally

†To whom correspondence should be addressed

and local (Smith and Waterman, 1981) alignments can be obtai-

ned in O(l2) time, where l denotes the length of the sequences. A

straightforward extension of these algorithms to N > 2 sequences

results in a computational complexity of O(lN ), which renders the

handling of sequences of realistic length impractical. Therefore,

most Multiple Sequence Alignment (MSA) tools are based on pro-

gressive alignment, in which N sequences are aligned through N−1
applications of a pairwise alignment algorithm, usually guided by a

tree which determines the order in which the sequences are combi-

ned. Many MSA tools that build on this principle have been imple-

mented such as the well-known programs CLUSTAL(W) (Higgins

and Sharp, 1988; Thompson et al., 1994), T-COFFEE (Notredame

et al., 1998), MUSCLE (Edgar, 2004) and MAFFT (Katoh et al.,

2002). Almost without exception, MSA tools target the alignment

of amino acid or nucleotide sequences.

In this paper, we focus on the alignment of multiple, mutually

homologous (i.e. derived from a common ancestor) genomic seg-

ments, represented as gene lists. This means that the alphabet of the

input sequences consists of individual genes, rather than nucleotides

or amino acids. Similarly to MSA at the nucleotide or amino acid

level, the goal is to align homologous genes, i.e. place genes that

belong to the same gene family in the same column. The homology

relationships between the individual genes have been established in

a pre-processing step using sequence similarity searches and pro-

tein clustering (Kuzniar et al., 2008). Whereas ancestral gene order

reconstruction (see e.g. Sankoff and Blanchette, 1998) starts from

homologous genomic segments to infer ancestral genome states

and quantify genome dynamics, the objective of our graph-based

approach is to create accurate alignments of homologous segments,

in order to facilitate the detection of additional homologous genomic

segments.

The multiple sequence alignment of gene lists differs signifi-

cantly from the alignment of sequences at the nucleotide or amino

acid level. First, the size of the alphabet of different nucleotides

(four) or amino acids (twenty) is much smaller than the typical

number of different gene families that occur in the genome of an

organism. This means that a certain gene only has a very limited

number of homologous genes in other gene lists. Second, through

evolution, nucleotide and amino acid sequences mainly undergo

1

Associate Editor: Prof. Martin Bishop

© The Author (2011). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

 Bioinformatics Advance Access published January 6, 2011
 at U

niversity of G
hent on January 12, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.psb.ugent.be/software
http://bioinformatics.oxfordjournals.org/


character substitutions, whereas chromosomes mainly undergo gene

loss/insertion, inversion and other types of rearrangements (e.g.

reciprocal translocation). These two major differences allow for the

development of a graph-based alignment approach, which will be

demonstrated to have a higher accuracy than a progressive approach,

in terms of the number of correctly aligned homologous genes.

We propose an algorithm similar to the so-called segment-based

alignment approach that is used in e.g. DIALIGN (Morgenstern,

1999). The first step in DIALIGN consists of the identification

of corresponding gap-free local alignments or ‘fragments’ between

pairs of sequences. The alignment of some of these fragments can

prohibit the alignment of others. Finding the largest (weighted) sub-

set of fragments that can be incorporated into a multiple alignment

is a difficult task, often referred to as the consistency problem (Corel

et al., 2010). In the context of the gene list alignment problem, the

‘fragments’ correspond to homologous genes. The consistency pro-

blem then is to find the maximal number of homologous genes that

can be included in a multiple alignment. Optimal solution methods

to this consistency problem exist (Lenhof et al., 1999), but are NP-

hard and therefore in general computationally impractical. Here, fast

heuristic methods are developed to remove inconsistent or conflic-

ting homology relationships between genes, from a graph-theoretic

perspective. Similar ideas have been developed by Pitschi et al.,

2010.

The proposed alignment algorithm is part of the i-ADHoRe

(iterative Automatic Detection of Homologous Regions) software

(Simillion et al., 2004, 2008), a map-based method to detect homo-

logous genomic segments within or between the genomes of related

organisms. Rather than identifying primary sequence similarity,

map-based methods look for statistically significant conservation of

gene content and gene order (collinearity). One of the key featu-

res of i-ADHoRe is the capability to uncover segmental homology,

even between highly diverged segments. When two homologous

segments have been identified, a so-called profile is constructed by

aligning both segments, hence combining the gene order and con-

tent of both homologous segments. This genomic profile can then be

used by i-ADHoRe as a more sensitive probe to scan the genome, in

order to identify additional homologous segments (Simillion et al.,

2004). This iterative process of alignment and detection continues,

until no additional statistically significant genomic segments can be

found.

It is clear that a high-quality alignment of the homologous gene

lists within a profile is imperative for a sensitive detection of additio-

nal homologous genomic segments within the i-ADHoRe software.

The original i-ADHoRe (Simillion et al., 2004) implementation

relied on profile construction using a progressive application of the

Needleman-Wunsch (pNW) aligner. Especially when dealing with

strongly diverged segments, one of the biggest problems with the

pNW method is that erroneous alignment decisions in early pairwise

steps propagate to the final alignment, causing the alignment quality

to degrade significantly when more segments are added. This pro-

blem was already partially addressed in i-ADHoRe 2.0, through the

introduction of a greedy, graph-based (GG) aligner (Simillion et al.,

2008). Rather than relying on a progressive adding of segments, the

GG-aligner considers the N segments ‘simultaneously’. Although

this GG-aligner has its merits compared to the pNW-aligner (e.g.

it avoids the ‘once a gap, always a gap’ problem), it was unable

to outperform the latter in terms of the number of correctly aligned

genes. This paper introduces a new greedy, graph-based algorithm

� � �

� � �

Fig. 1. Example of the graph-based aligner for three simple gene lists.

(a)-(e) Basic alignment algorithm. The active nodes are contained in the das-

hed rectangle. Note that the basic alignment procedure is ‘stalled’ in (c) and

that two conflicting links have to be removed first (d), to allow the aligner to

continue. (f) Resulting alignment.

(called GG2), that builds on the original GG-aligner. First, the basic

graph-based alignment algorithm will be explained, followed by the

development of a heuristic to resolve consistency problems in this

graph, so-called conflicts. In later sections, we demonstrate that

the new GG2-aligner outperforms both the pNW method and the

original GG-aligner in terms of alignment accuracy. The new GG2-

aligner has been implemented in the latest 3.0 version of i-ADHoRe

and its C++ source code can be downloaded for academic purposes

(http://bioinformatics.psb.ugent.be/software).

2 ALGORITHM

2.1 Graph structure

Consider a set of N unaligned genomic segments that are known to be

mutually homologous. Each of the segments is represented by an ordered

list that contains the genes in the same order as they appear on the corre-

sponding segment. The number of genes in the ith list is denoted by li.

Every gene in a list is homologous to zero or more genes in other lists. Alt-

hough tandem duplicated genes on a genomic segment are largely filtered

from the input by i-ADHoRe (see Section 3.1), their presence within the

unaligned segments does not interfere with the alignment procedure. The

gene lists can be represented together as a single graph G(V, E, w) as fol-

lows. First, the genes are represented by vertices (or nodes) V . The jth node

(j = 1 . . . li) on the ith gene list (i = 1 . . . N ) is referred to by ni,j . The

functions seg(.) and ind(.) return the gene list and the position index of a

node respectively, i.e. seg(ni,j ) = i and ind(ni,j ) = j. Second, consecutive

genes on a segment (i.e. ni,j and ni,j+1) are connected through a direc-

ted arc or so-called edge pointed towards the gene with the highest index

(the right-most gene). These directed edges simply connect the genes on a

segment in a linear fashion. Finally, homologous genes located on different

segments are connected through an undirected arc or so-called link. No links

are created between homologous genes on the same segment (tandem dupli-

cates). A weight w can be attributed to each link. The higher this weight is

taken, the more likely it is that the two nodes connected by this link, will

show up in the same column in the final alignment. This will be explained in

later sections. The graph corresponds to the ‘extended alignment graph’ as

2

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.psb.ugent.be/software
http://bioinformatics.oxfordjournals.org/


introduced by Lenhof et al., 1999, although a slightly different terminology

has been adopted here.

2.2 Basic alignment procedure

The basic workflow of the alignment algorithm is illustrated in Figure 1.

Figure 1a depicts three simple unaligned gene lists. The undirected links are

represented by a solid line, the directed edges by a dashed line.

At any time, the basic alignment algorithm considers a set of N nodes,

one node from each segment. These nodes are referred to as active nodes.

For each segment i, the index ai refers to the active node ni,ai
. At any

time, all nodes on segment i, located to the left of the active node ni,ai
have

already been aligned, the nodes ni,j with an index j ≥ ai still have to be

processed. Links that are incident to active nodes are called active links. The

algorithm starts by considering the leftmost node from each segment, i.e.

nodes {n1,1, . . . , nN,1}.

If, among the N active nodes, a minimal set of nodes S = {nk,ak
} can

be found, for which each node in S is linked only to other nodes within S,

this set can be aligned. We say that S is alignable. Note that S can be a

singleton, and that more than one (disjoint) set can be found at a given time.

The term minimal therefore refers to the fact that S should not be the union

of two other alignable sets. Hence, all nodes within a minimal, alignable set

S, correspond to genes that are homologous to each other.

The next set of active nodes is obtained by incrementing the index ai for

each segment i that has a node contained within one of the detected alignable

sets. In other words, on those segments, the subsequent node is considered.

At the corresponding position of all other segments, a gap is introduced.

This is illustrated in Fig. 1a and 1b. This process continues until either the

end of all segments is reached, or a so-called conflict is encountered. A con-

flict is immediately detected when no alignable set S can be found among

the active nodes, as illustrated in Fig. 1c. Conflicts can only be resolved by

removing one or more links (see Fig. 1d). This procedure will be explained

in sections (2.3)-(2.6). Once a conflict has been resolved, the basic alignment

procedure can be resumed (Fig. 1e). Note that aligning all segments ‘simul-

taneously’ differs conceptually from progressive alignment, where first two

complete segments are aligned before considering a third one, and so on.

Finally, the resulting alignment is obtained as shown in Figure 1f.

2.3 Conflicts and cycles in G

The basic alignment procedure described above is straightforward, as long as

no alignment conflicts are encountered. We define a conflict as a set of links

that cannot be aligned, i.e. the alignment of some links in the set prohibits

the alignment of other links. By the expression ‘alignment of a link’, we

mean the alignment of the two nodes connected by the link. Sources for

alignment conflicts are gene duplications, local inversions, translocations

and false positive homology assignment between genes.

In Section 2.5, we will be prove that if no alignable set S can be found

among the active nodes, such a conflict is always present. Conflicts can

only be resolved by removing one or more links that contribute to the con-

flict. This means that certain homologous genes will not be placed in the

same column in the final alignment. Because the goal of the algorithm is to

minimize this number of misaligned (taking the weight w of the links into

account), it is imperative to carefully select which links are removed.

The presence of links and edges induces an ordering of the nodes in the

graph G. Consider two nodes u and v, for which a path P in G exists from

u to v. In general, such a path consists of both links and edges. The latter

can only be traversed in the sense indicated by their arrow, i.e. from left to

right. If a path from vertex u to vertex v contains at least one edge, then the

order relationship u ≺ v holds. This means that, if all links in P were to be

aligned (suppose that this is possible), node u would necessarily end up in a

column left to the column containing node v in the final result. We call such a

path a blocking path PB with respect to to the nodes u and v, as opposed to a

direct path PD , that contains only links and hence implies that nodes u and v

should be aligned. This is indicated by u ∼ v. A path from node u to node v

imposes a direction on the links that are part of that path. In this context, the

�

�

� �

� �

�

�

��

�	

�

�


��

��

�	

��

��

�

Fig. 2. (a) The path PB = {L2, L3, L4} defines an elementary blocking

path from node u to v. Similarly, PD = {L2, L3} is an elementary direct

path between nodes x and y. The cycle CC = {L1 ∪ PB} is an ele-

mentary blocking cycle, corresponding to a minimal conflict of degree 4.

Removing any link from CC will resolve the conflict. (b) The path PB =
{L2, L3, L4, L5} is a blocking path from u to v, however, the path is

not elementary since both links L3 and L5 originate from nodes on the

same segment. Indeed, even though CC = {L1 ∪ PB} is a blocking

cycle in G, the removal of e.g. L1 does not resolve the conflict. The cycle

C′
C = {L3, L4} (hence C′

C ⊂ CC ) on the other hand is an elementary

blocking cycle. Removing either one of the two links in C ′
C resolves the

conflict.

functions tail(.) and head(.) return the initial and terminal vertex of a such a

link, respectively. This directional property of links exists only in the context

of the specified path. A path P from node u to node v can unambiguously be

described by only listing the links –and not the directed edges (if any)– in the

order of appearance in the path, i.e. P = {Li} (i = 1 . . . p), where seg(u)

= seg(tail(L1 )), ind(u) ≤ ind(tail(L1 )), seg(head(Li)) = seg(tail(Li+1 )),

ind(head(Li)) ≤ ind(tail(Li+1 )), ∀i = 1 . . . p − 1, seg(v) = seg(head(Lp ))

and ind(head(Lp )) ≤ ind(v).

Given a link L1 between nodes u and v, an alignment conflict occurs,

when there is at least one blocking path PB = {Li} (i = 2 . . . p) from u

to v. Indeed, the presence of L1 implies that u ∼ v, whereas the presence

of PB implies that u ≺ v, a contradiction. Clearly, it is impossible to align

all links in the set {Li} (i = 1 . . . p), hence they generate a conflict. The

union CC = {L1 ∪ PB} is a so-called conflicting cycle in the graph G.

We define a conflicting cycle as a closed path in G that contains at least one

(directed) edge. By this reasoning, one can immediately see that alignment

conflicts correspond to conflicting cycles in G and vice versa. We define the

number of links p in the cycle CC as the degree of the conflict. Clearly, the

degree is at least two. Also, note that the link L1 does not play a special role

in the conflict. Indeed, if we consider an arbitrary link Li (i = 1 . . . p) in

CC , the links {Li+1, . . . , Lp, L1, . . . , Li−1} also define a blocking path

from node head(Li) to node tail(Li).

As mentioned before, a conflict can only be resolved by removing one

or more links that contribute to the conflict. If the removal of any link Li

(i = 1 . . . p) from its corresponding cycle CC resolves all conflicts between

the remaining links (i.e. there are no conflicting cycles left in CC \ {Li}),

we say that the conflict is minimal.

For any given cycle in the graph G, the number of links that terminate in

nodes on a certain segment s is equal to the number of links that originate

from nodes on the same segment s. If at most one link in the cycle originates

from each segment, we call it elementary. The maximum number of links in

an elementary cycle is therefore given by N . Similarly, an elementary path

is defined as a path where at most one link originates from each segment.

The maximum number of links in such a path is N − 1.

Proposition 1: Minimal conflicts correspond to elementary conflicting

cycles CC and vice versa.

Proof: see supplementary data.

3

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


� �

� �

���
���

��� ���

�� ��

��

�� ��

��
���

	�� ��� 	�� 	��

	��

���

�
 �


���

	�� 	��

	��

�
 �


��

�

�

�

�

�

�

Fig. 3. Example of a simple alignment conflict and its solution. In (a), (b)

and (c), the link scores SL are calculated for the active links L1, L2 and

L3 (indicated by a bold line) respectively. All links have weight (and hence

capacity) w = 1, the edges have unlimited capacity. The numbers near the

links denote the flow/capacity of that link. The maximum flow from node

s to t through elementary blocking paths (indicated in red) is (a) fC
st = 2

for link L1, (b) fC
st = 1 for link L2, (c) fC

st = 1 for link L3. In all three

cases, no conflicting flows are possible from node t to s, i.e. fC
ts = 0. The

maximum flow from node s to t through direct paths is fD
st = 1, in all

three cases. Therefore, SL1
= −1, SL2

= 0 and SL3
= 0. (d) Resulting

alignment after the link with the lowest score (i.e. L1) is removed from G.

As an immediate consequence, the maximum degree of a minimal conflict

is given by the number of segments N .

The importance of the concept of minimal conflicts stems from the fact

that such conflicts can be resolved by removing any link involved in the

conflict. This is not the case for conflicts associated with non-elementary

blocking cycles (compare e.g. the examples in Figures 2a and 2b). Also,

from the proof of Proposition 1, it follows that any non-elementary con-

flicting cycle CC corresponds to one or more minimal conflicts, either by

removing superfluous links from CC , or by decomposing CC into several

elementary conflicting cycles. Therefore, in what follows, we only con-

sider elementary paths, elementary cycles and minimal conflicts, without

explicitly mentioning the terms elementary and minimal.

2.4 Conflict detection and resolution

If the basic alignment procedure is stalled because of conflicts (i.e. no aligna-

ble set can be found among the active nodes), we want to determine which

links are involved in these conflicts and which links are to be removed from

G. For now, we only consider the active links as candidates for removal. In

the next section, we will prove that this approach is indeed a valid one.

Consider an active link between nodes ni,ai
and nj,k , with i 6= j and

k ≥ aj (with aj the index of the active node nj,aj
). For the simplicity

of notation, these nodes are referred to as s and t respectively, the active

link is denoted by Lst. The link Lst contributes to a conflict, if there is a

blocking path PB between s and t or vice versa, between t and s. Indeed,

the alignment of the link Lst (or any other direct path PD between s and t)

implies the ordering s ∼ t. A blocking path PB from s to t implies s ≺ t,

and similarly, a blocking path from t and s implies s � t. We refer to these

conflicts as st-conflicts and ts-conflicts respectively.

To quantitatively investigate the number of conflicts that Lst is invol-

ved in, we want to assess to which degree s and t are connected through

blocking paths. In graph theory, such problems can be addressed by solving

the well-known maximum flow problem. For a formal definition of the maxi-

mum flow problem, we refer to Ford and Fulkerson, 1962. Intuitively, the

maximum flow is the largest amount of ‘flow’ (e.g. fluid or current) that can

be transported between two given nodes, called source and sink respectively.

Let fst be the maximum flow from node s to node t acting as the source and

sink respectively. As an extra restriction, it is imposed that a valid flow can

only pass through elementary paths (either blocking or direct) from s to t.

The edges have unlimited flow capacity, however, the flow can only pass in

the sense indicated by the direction of the edge (from left to right). The links

have a capacity equal to their weight w, but impose no direction on the flow.

There exist many polynomial algorithms for the solution of the maximum

flow problem. This is more thoroughly discussed in the supplementary text.

Similarly, let fD
st be the maximum flow from s to t through direct ele-

mentary paths. Note that this includes the flow through the link Lst. Then

clearly, fC
st = fst−fD

st is the maximum flow from s to t through elementary

blocking paths. As a consequence of the max-flow, min-cut theorem (Elias

et al., 1956), fC
st is the minimum link capacity that has to be removed from G

to disconnect s and t through elementary blocking st-paths, i.e. to resolve all

st-conflicts. Similarly, fC
ts can be calculated as the maximum flow through

elementary blocking paths from t to s. We then use the following score to

evaluate link Lst:

SLst
= fD

st − |fC
st − fC

ts |

Since st-conflicts and ts-conflicts mutually conflict, at least min(fC
st , f

C
ts)

capacity will need to be removed from G, regardless whether or not s and t

are aligned. The term |fC
st−fC

ts| therefore denotes the minimal, net capacity

that will need to be removed from G if s and t are aligned. Similarly, fD
st

denotes the minimal capacity that will need to be removed from G if s and

t will not be aligned. Clearly, a positive score for SLst
indicates that it is

probably best to align s and t, whereas a negative score for SLst
indicates

that it is probably best to remove the link Lst from the graph.

Note that if there are multiple st-paths, that these paths might be in mutual

conflict. This fact is not taken into account by the link score SLst
. In other

words, there is no guarantee that the capacity |fC
st − fC

ts | will effectively be

aligned, even if s and t are disconnected through direct paths.

The algorithm for conflict resolution can now be described as follows. If,

during the basic alignment procedure, described in Section 2.2, no alignable

set S can be found among the active nodes, all active links are considered.

For each of these links L, the score SL is calculated, and the link with

the lowest score (i.e. the most problematic link), is removed from G. This

process is repeated, until again, an alignable set S can be found among the

active nodes. Figure 3 presents a simple example.

2.5 Active conflicts

In this section, a refinement to the conflict resolution algorithm is develo-

ped. Consider a conflict situation in the graph G(V, E) (i.e. no alignable

set S can be found among the N active nodes in G). Next, consider the

subgraph G′(V, E′) ⊂ G(V, E) that only contains the active links (i.e. the

links incident to the active nodes). We show that even in the reduced graph

G′(V, E′), no alignable set can be found among the active nodes.

Proposition 2: If, during the basic alignment procedure, no alignable set

can be found among the N active nodes in the graph G(V, E), at least one

conflict is present among the active links. Furthermore, no alignable set can

be found among the same active nodes in the subgraph G′(V, E′).

Proof: see supplementary data.

Proposition 2 provides a more fundamental understanding of alignment

conflicts. First, it shows that active links are indeed good candidates for

removal. Indeed, even the removal of all non-active links would still not

allow for the alignment of any of the active nodes.

Second, it shows that if the basic alignment procedure is stalled, at least

one conflict, consisting of active links, is present. Such a conflict is called

an active conflict. None of the active nodes that are incident to a link in an

active conflict can be aligned, as long as this conflict exists. Active conflicts

are therefore high-priority conflicts that need to be resolved instantaneously.

4

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


� �

�

��

��

��

���

���
���

Fig. 4. Example of active conflicts and the improved heuristic. All links have

weight w = 1. (a) Although all active links have an equal score (SL1
=

SL2
= SL3

= 0), only links L1 and L2 are involved in an active conflict.

The alignment of the upper two segments can not progress as long as this

conflict exists. (b) Situation after L2 has been removed. Now, links L′
2

and

L′
3

are involved in an active conflict, with scores SL′

2

= −2 and SL′

3

= 0.

(c) Final alignment after L′
2

has been removed.

In the case of conflicts, the active links can therefore be grouped into three

categories: active links involved in at least one active conflict, active links

involved in non-active conflicts and active links that are not involved in a

conflict. The conflict resolution algorithm is therefore modified as follows.

For each of the links L involved in at least one active conflict, calculate the

score SL. The link with the lowest score is removed from G. It is easily

determined whether or not an active link is involved in an active conflict,

by calculating fC
st and fC

ts in the reduced graph G′. If any of the two flows

is nonzero, an active conflict is present. A simple example of the improved

heuristic is illustrated in Figure 4.

In the results section, it will be demonstrated that this approach indeed

improves the alignment quality.

2.6 Faster heuristics for conflict resolution

The calculation of the maximum flow between two nodes in the graph is

computationally expensive. However, upper bounds to the maximum flow

can easily be derived. Given an active link Lst between source node s =
ni,ai

and sink node t = nj,k , one can immediately notice that the final

link in a blocking st-path necessarily ends in a node nj,k′ with k′ ≤ k.

Therefore, an upper bound to fC
st,UB

can be found by summing the weights

w(L) of all links incident to these nodes:

fC
st,UB =

k
X

k′=aj

X

L∈nj,k′

w(L),

with j =seg(t) and k =ind(t). Similarly, blocking ts-paths necessarily end

in the source node s and an upper bound fC
ts,UB

can therefore be established

by summing the weights of the links L 6= Lst incident to s.

fC
ts,UB =

X

L∈ni,ai
,L 6=Lst

w(L)

Finally, a lower bound to the direct flow fD
st is simply given by fD

st,LB
=

w(Lst). Therefore, a lower bound to the link score is given by

SLst,LB = fD
st,LB − max(fC

st,UB, fC
ts,UB).

Selecting the active link L with the lowest lower bound score SL,LB

yields a much faster heuristic. Indeed, the calculation of SL,LB requires no

maximum flow problems to be solved. Even though this lower bound esti-

mation may be significantly underestimating the actual score SLst
, it still

provides a powerful method to select a link for removal, if we assume that

the link with the lowest lower bound score is also the link with the lowest

score.

Taking this reasoning even a step further, the heuristic can even be further

simplified, if one assumes that the sum of the weights of the links, incident

to a node, is constant for all nodes, i.e. that the links are evenly distributed

among the nodes. Given a link Lst between source node s = ni,ai
and sink

node t = nj,k , this means that fC
st,UB

is proportional to (k − aj), while

fC
ts,UB

and fC
st,LB

are constant. This is clearly a rather rough approxima-

tion, however, it leads to the very simple and fast heuristic: select the active

link incident to node nj,k for which the ‘length’ of the link (k−aj) is maxi-

mal (the ‘longest’ link). Such a link has the most possibilities for conflicting

st-paths, and is hence a good candidate for removal.

We now summarize the heuristics for conflict resolution and introduce

three random methods. These random methods are not of any particular

interest, but it is always interesting to compare the more mathematically

supported methods to random methods.

Select, in the case of a conflict, among the active links, the following link

for removal:

• RA (RAndom): a random link.

• RC (Random Conflict): a random link that is involved in at least one

(active or non-active) conflict.

• RAC (Random Active Conflict): a random link that is involved in at

least one active conflict.

• LL (Longest Link): the link L, involved in at least one active conflict,

incident to node nj,k for which (k − aj) is maximum.

• LLBS (Lowest Lower Bound Score): the link L, involved in at least

one active conflict, with the lowest lower bound score SL,LB.

• LS (Lowest Score): the link L, involved in at least one active conflict,

with the lowest score SL.

3 RESULTS AND DISCUSSION

3.1 Datasets

To test the performance of multiple sequence alignment tools,

a number of benchmarks have been introduced for both pro-

tein sequences (such as BALiBASE (Thompson et al., 2005),

OXBench (Raghava et al., 2003), PREFAB (Katoh et al., 2002) and

SMART (Schultz et al., 1998)) and DNA sequences (Carroll et al.,

2007). Because no similar benchmark exists to test the performance

of gene list alignment tools, two ad hoc input datasets were genera-

ted by running the i-ADHoRe tool on the Arabidopsis thaliana (The

Arabidopsis Genome Initiative, 2000) genome separately (dataset I)

and on the Arabidopsis thaliana, Populus trichocarpa (Tuskan et al.,

2006) and Vitis vinifera (Jaillon et al., 2007) genomes (dataset II). A.

thaliana is a good candidate to validate the aligners and heuristics,

since its genome contains both strongly diverged and more closely

related homologous chromosomal regions (Van de Peer, 2004; Tang

et al., 2008). Using the profile searches (see Simillion et al., 2008),

the i-ADHoRe algorithm produces 921 and 7 821 sets of homo-

logous genomic segments for datasets I and II respectively. The

number of genomic segments N in these sets varies from 2 to 11

5

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


P

# correctly aligned homologous genes

# input GG2: the proposed greedy, graph-based aligner

N sets pNW GG RA RC RAC LL LLBS LS

2 447 4877 4719 4108 4109 4109 4843 4871 4874

3 169 2823 2704 2477 2544 2574 2810 2817 2852

4 119 2924 2769 2502 2611 2684 2921 2971 3008

5 49 1634 1533 1375 1454 1514 1627 1655 1697

6 41 1715 1516 1375 1485 1577 1773 1747 1814

7 39 2114 1803 1572 1732 1884 2149 2152 2275

8 24 1229 1062 882 995 1094 1278 1263 1358

9 16 807 713 623 725 773 880 885 921

10 13 703 670 602 704 741 810 822 825

11 4 211 228 203 239 246 263 259 259
P

921 19 037 17 717 15 719 16 596 17 196 19 354 19 442 19 883

Table 1. Comparison of the number of correctly aligned homologous genes in dataset I. The scores of the random methods are averaged over 1 000 runs.

(dataset I) and from 2 to 15 (dataset II). For both datasets, the i-

ADHoRe settings were gap size = 30, cluster gap = 35, q = 0.75

and p = 0.01. Tandem duplicates within a distance of gap size / 2

were remapped onto the representative gene with the lowest index.

3.2 Alignment accuracy

To detect homologous segments, i-ADHoRe looks for statistically

significant conservation of gene content and order. When two homo-

logous segments are visualized in a dot-plot, their collinearity shows

up as a ‘diagonal’. The homologous gene pairs between the two

segments that are used by i-ADHoRe to detect these ‘diagonals’,

are called anchors. These anchors are a subset of all homologous

gene pairs between the two segments. By giving a higher weight to

the links associated with anchors, they can effectively be used as

an alignment guide to improve the overall alignment quality. In all

simulations, the weight w of the links corresponding to anchors was

set to 1, whereas the weight of the other links was set to 0.1. These

other links correspond to homologous genes that are further off-

diagonal, and therefore less likely to be aligned in the final result.

Note that more complex weight schemes could be incorporated, pos-

sibly improving alignment results. For example, the link weights

could represent the probability that two genes are truly homologous.

In this work, such schemes were not investigated.

The proposed greedy, graph-based aligner (GG2) is compared to

both a progressive application of the Needleman-Wunsch method

(pNW) and the original greedy, graph-based aligner (GG). The

pNW-aligner first performs a pairwise alignment of the two genomic

segments that share the most anchor points, i.e. the two most clo-

sely related segments. Subsequently, a third segment is added to this

intermediate result and so on. It should be noted that more advanced

improvements to this basic progressive approach have been imple-

mented, e.g. by using a guide tree to determine the order in which

the segments are added (Thompson et al., 1994), or by incorporating

consistency-objective functions (Notredame et al., 2000).

The original graph-based GG-aligner relies on the same ‘basic

alignment procedure’ as the GG2-aligner, however, conflicts are

handled in a more primitive fashion. In short, based on the number

of links and their lengths (cfr. Section 2.6), the GG-aligner calcula-

tes a score for each active node (as opposed to for each active link in

the GG2-aligner). Instead of removing a single link, the GG-aligners

removes all links incident to the active node with the lowest score.

In the GG-aligner’s heuristic, no thorough analysis of conflicting

paths or links is conducted.

In Table 1, the number of correctly aligned homologous genes

for the profiles generated by the different aligners are compared for

dataset I. We consider two homologous genes to be correctly ali-

gned if they are placed in the same column in the final result. This

omits the need for a reference alignment. The numbers in Table 1

therefore correspond to the sum-of-pairs metric. Each row shows the

accumulated sum-of-pairs scores for all input sets with a specified

number of segments N (N = 2 . . . 11). The final row represents the

sum-of-pairs over all profiles, and can therefore be seen as a quality

benchmark for the complete dataset.

First, it is immediately clear that all random methods perform

significantly worse than the more mathematically supported heuri-

stics. The score of the RA-aligner is an indication of the number

of homologous genes that can be aligned ‘for free’ by the basic ali-

gnment procedure. The fact that this score is rather high means that

a fairly large number of links is not involved in any conflict. Indeed,

if for example all input segments were identical (perfect collinea-

rity and hence no conflicts), all methods would produce identical

(and optimal) results. When comparing the numbers of the other

aligners, it is important to keep this consideration in mind. The RC-

aligner improves the RA score, by making sure that no active links

are removed that do not contribute to any conflict. Interestingly, the

alignment score is again significantly improved by using the RAC-

aligner, which selects a random active link, involved in at least one

active conflict. This provides experimental evidence for the observa-

tions made in Section 2.5, i.e. that active conflicts are high-priority

conflicts. Note that in the case of a conflict for N = 2, all active

links are necessarily involved in an active conflict. Therefore, the

RA, RC and RAC heuristics perform equally well for N = 2.

The LL, LLBS and LS heuristics strongly outperform both the

random methods and the original GG-aligner, and, albeit to a

somewhat lesser extent, also the pNW-method. Unsurprisingly, the

pNW-aligner is best for N = 2, since it produces optimal results.

The LL, LLBS and LS methods however, also obtain close to opti-

mal results. For larger N , the relative difference in score between

pNW on the one hand and LL, LLBS and LS one the other hand

increases. This is to be expected: erroneous alignment decisions in

6

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


early pairwise steps of the pNW-aligner propagate when more seg-

ments are added. The graph-based methods are more robust in the

sense that they take the links on all segments into consideration. For

higher N , the difference in score between LS and pNW is larger

than 10%. In total, the LS-method is able to align 846 (4.4%) more

homologous genes than the pNW methods. An alignment example

of six homologous genomic segments in the A. thaliana genome as

produced by the pNW and the LS heuristic is given in supplementary

Fig. 3.

The difference in alignment quality between the LL, LLBS and

LS heuristics is rather modest, however, it can be observed that LL

< LLBS < LS, for nearly all N . Despite the simplicity of the LL

heuristic, this method still performs remarkably well, and even out-

performs the pNW method on this dataset. The biggest difference

between these methods lies in the alignment speed. This will be

discussed in more detail in the next section.

It is important to mention that the relative difference in alignment

quality between the pNW on the one hand and the LL, LLBS and

LS heuristics associated with the GG2-aligner on the other hand,

decreases for datasets that consist of genomic segments that are less

diverged. For instance, Table 2 lists the alignment scores for data-

set II. Even though the ranking of the different alignment methods

remains the same, the relative difference in alignment score is smal-

ler. This is due to the fact that relatively fewer alignment conflicts

exists in this dataset, which can be seen from the high score of the

random aligners.

3.3 Program runtime

A comparison for the alignment times of the different heuristic

methods can be found in Table 2 for the larger dataset II. Except for

the LS heuristic, the total alignment times are very low. The unfavo-

rable time complexity of the LS heuristic prohibits the alignment of

sequences with larger N . In practice, when N > 10, the CPU time

for the LS method rapidly increases. In i-ADHoRe, we therefore

offer the LLBS heuristic by default. Experiments on an extremely

large dataset consisting of dozens of eukaryotic species (Hubbard

et al., 2009) have shown that this method can easily handle N=50,

enough for most practical problems.

A detailed analysis of the computational complexity of the algo-

rithm is given in supplementary data.

3.4 Comparison of i-ADHoRe to related tools

The GG2-aligner is an important component of i-ADHoRe, which

detects evolutionary related genomic regions within or between

related species through sensitive iterative profile searches. In con-

trast to this approach, CYNTENATOR (Rödelsperger and Dieterich,

2010) and the method described by Fritzsch et al. (2006) compute

multiple gene order alignments progressively using initial pairwise

alignments and a guide tree. DRIMM-Synteny (Pham and Pevzner,

2010) detects non-overlapping synteny blocks to perform rearran-

gement analysis in duplicated genomes and reconstruct ancestral

genomes. Although our method does not infer likely evolutionary

paths of genome evolution events, the application of the profile

search on the Arabidopsis genome (dataset I) identifies a much

larger fraction of the genome in duplicated blocks, compared to

DRIMM. Pham and Pevzner report fractions of 66% and 8% in

duplicated blocks with a multiplicity of at least two and at least four

alignment alignment alignment

method score time (s)

pNW 518 247 1.7

GG 497 771 5.9

RA 489 020 6.2

RC 501 241 5.2

RAC 505 447 3.3

LL 525 665 2.3

LLBS 525 652 2.2

LS 529 633 6 742

Table 2. Comparison of alignment scores and runtimes for dataset II.

respectively, whereas i-ADHoRe detects 90.3% and 25.8% respec-

tively. In agreement with the yeast results reported by DRIMM,

including a more ancestral genome lacking a recent whole-genome

duplication (e.g. Vitis in dataset II) serves as a reference back-

bone to identify and align highly diverged Arabidopsis genomic

segments (Van de Peer et al., 2009).

4 CONCLUSION

We have developed a greedy, graph-based algorithm for the ali-

gnment of multiple, homologous gene lists. Several properties of

conflicts within the alignment graph have been derived and pro-

ved. Three heuristics for conflict resolution were developed on these

theoretical grounds, and have been demonstrated to be able to out-

perform an older graph-based algorithm and a progressive approach

in terms of alignment accuracy. As is often the case, a trade-off bet-

ween computational requirements and alignment accuracy can be

observed. The algorithm has been implemented in the latest version

of i-ADHore 3.0.

Funding: This project is funded by the Research FoundationFlan-

ders and the Belgian Federal Science Policy Office: IUAP P6/25

(BioMaGNet). We acknowledge the support of Ghent Univer-

sity (Multidisciplinary Research Partnership “Bioinformatics: from

nucleotides to networks”). KV and YS are Postdoctoral Fellows

of the Research Foundation-Flanders (FWO). SP thanks the Insti-

tute for the Promotion of Innovation by Science and Technology in

Flanders for a predoctoral fellowship.

REFERENCES

Carroll, H., Beckstead, W., O’Connor, T., Ebbert, M., Clement, M., Snell, Q., and

Mcclellan, D. (2007). Dna reference alignment benchmarks based on tertiary

structure of encoded proteins. Bioinformatics, 23(19), 2648–2649.

Corel, E., Pitschi, F., and Morgenstern, B. (2010). A min-cut algorithm for the

consistency problem in multiple sequence alignment. Bioinformatics, 26(8),

1015–1021.

Edgar, R. C. (2004). Muscle: multiple sequence alignment with high accuracy and high

throughput. Nucleic acids research, 32(5), 1792–1797.

Elias, P., Feinstein, A., and Shannon, C. (1956). A note on the maximum flow through

a network. Information Theory, IRE Transactions on, 2(4), 117–119.

Ford, L. and Fulkerson, D. (1962). Flows in networks. Princeton University Press,

Princeton, NJ.

Fritzsch, G., Schlegel, M., and Stadler, P. F. (2006). Alignments of mitochondrial

genome arrangements: Applications to metazoan phylogeny. Journal of Theoretical

Biology, 240, 511–520.

7

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


Higgins, D. G. and Sharp, P. M. (1988). Clustal: a package for performing multiple

sequence alignment on a microcomputer. Gene, 73(1), 237–244.

Hubbard, T. J. P., Aken, B. L., Ayling, S., et al. (2009). Ensembl 2009. Nucl. Acids

Res., 37(suppl 1), D690–697.

Jaillon, O., Aury, J.-M., et al. (2007). The grapevine genome sequence suggests

ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463–467.

Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002). Mafft: a novel method for

rapid multiple sequence alignment based on fast fourier transform. Nucleic acids

research, 30(14), 3059–3066.

Kuzniar, A., van Ham, R. C., Pongor, S., and Leunissen, J. A. (2008). The quest for

orthologs: finding the corresponding gene across genomes. Trends in genetics : TIG,

24(11), 539–551.

Lenhof, H., Morgenstern, B., and Reinert, K. (1999). An exact solution for the segment-

to-segment multiple sequence alignment problem. Bioinformatics, 15, 203–210.

Morgenstern, B. (1999). Dialign 2: improvement of the segment-to-segment approach

to multiple sequence alignment. Bioinformatics, 15(3), 211–218.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular

biology, 48(3), 443–453.

Notredame, C., Holm, L., and Higgins, D. G. (1998). Coffee: an objective function for

multiple sequence alignments. Bioinformatics, 14(5), 407–422.

Notredame, C., Higgins, D. G., and Heringa, J. (2000). T-coffee: A novel method

for fast and accurate multiple sequence alignment. Journal of molecular biology,

302(1), 205–217.

Pham, S. K. and Pevzner, P. A. (2010). DRIMM-Synteny: decomposing genomes into

evolutionary conserved segments. Bioinformatics, 26, 2509–2516.

Pitschi, F., Devauchelle, C., and Corel, E. (2010). Automatic detection of anchor points

for multiple sequence alignment. BMC bioinformatics, 11, 445+.

Raghava, G. P. S., Searle, S., Audley, P., Barber, J., and Barton, G. (2003). Oxbench:

A benchmark for evaluation of protein multiple sequence alignment accuracy. BMC

Bioinformatics, 4(1), 47+.

Rödelsperger, C. and Dieterich, C. (2010). CYNTENATOR: progressive gene order

alignment of 17 vertebrate genomes. PloS one, 5(1), e8861+.

Sankoff, D. and Blanchette, M. (1998). Multiple genome rearrangement and breakpoint

phylogeny. Journal of Computational Biology, 5, 555–570.

Schultz, J., Milpetz, F., Bork, P., and Ponting, C. P. (1998). Smart, a simple modular

architecture research tool: Identification of signaling domains. Proceedings of the

National Academy of Sciences of the United States of America, 95(11), 5857–5864.

Simillion, C., Vandepoele, K., Saeys, Y., and Van de Peer, Y. (2004). Building genomic

profiles for uncovering segmental homology in the twilight zone. Genome research,

14(6), 1095–1106.

Simillion, C., Janssens, K., Sterck, L., and Van de Peer, Y. (2008). i-ADHoRe 2.0:

an improved tool to detect degenerated genomic homology using genomic profiles.

Bioinformatics (Oxford, England), 24(1), 127–128.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular

subsequences. Journal of molecular biology, 147(1), 195–197.

Tang, H., Bowers, J. E., Wang, X., Ming, R., Alam, M., and Paterson, A. H. (2008).

Synteny and collinearity in plant genomes. Science, 320(5875), 486–488.

The Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the

flowering plant Arabidopsis thaliana. Nature, 408(6814), 796–815.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Clustal w: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic acids research,

22(22), 4673–4680.

Thompson, J. D., Koehl, P., Ripp, R., and Poch, O. (2005). Balibase 3.0: latest

developments of the multiple sequence alignment benchmark. Proteins, 61(1),

127–136.

Tuskan, G. A., DiFazio, S., Jansson, S., et al. (2006). The genome of black cottonwood,

populus trichocarpa (torr. & gray). Science, 313(5793), 1596–1604.

Van de Peer, Y. (2004). Computational approaches to unveiling ancient genome

duplications. Nature Reviews Genetics, 5(10), 752–763.

Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L., and Vandepoele, K. (2009). The

flowering world: a tale of duplications. Trends in Plant Science, 14(12), 680–688.

8

 at U
niversity of G

hent on January 12, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/



