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Abstract. The scientific literature is a rich and challenging data source
for research in systems biology, providing numerous interactions between
biological entities. Text mining techniques have been increasingly useful
to extract such information from the literature in an automatic way, but
up to now the main focus of text mining in the systems biology field has
been restricted mostly to the discovery of protein-protein interactions.
Here, we take this approach one step further, and use machine learning
techniques combined with text mining to extract a much wider variety of
interactions between biological entities. Each particular interaction type
gives rise to a separate network, represented as a graph, all of which can
be subsequently combined to yield a so-called integrated network repre-
sentation. This provides a much broader view on the biological system
as a whole, which can then be used in further investigations to analyse
specific properties of the network.

1 Introduction

A wealth of biological information is currently recorded in scientific publications,
which are easily accessible through online literature services like PubMed1. How-
ever, such resources are expanding exponentially and in order to keep up with
the recent literature and retrieve relevant biological information, automated sys-
tems have become a time saving necessity.

Text mining methods are data mining techniques that focus on extracting rel-
evant knowledge from these largely unstructured texts. Their use in systems bi-
ology started with simple, co-occurrence based methods that suggested relations
between entities when they appeared in the same sentence [Ding et al, 2002], typ-
ically exhibiting high recall, but low precision [Hoffmann and Valencia, 2004]. As
high precision frameworks are often preferred in systems biology, especially when
integrating different data sources, more elaborated techniques, either based on
hand-crafted rules [Fundel et al, 2007] or machine learning methods have been
introduced. We will focus here on the latter techniques as they scale better to

1 http://pubmed.gov
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large datasets, and can be easily retrained when more data becomes available.

Up to now, the main focus of text mining techniques that rely on machine
learning approaches has been the automatic extraction of protein-protein inter-
actions, or the association of genes to certain diseases. A number of evaluation
corpora have been built to assess the performance of techniques on the first
of these tasks [Pyysalo et al, 2008,Van Landeghem et al, 2008a]. Recently, the
BioNLP’09 shared task was initiated as a community-wide effort to leverage the
scope of text mining techniques to extract more complex events from text, in
order to capture a wider variety of interactions and thus gain more knowledge
from information encoded in the literature [Kim et al., 2009].

The main task in this challenge was to identify as good as possible 9 different
types of bio-molecular events. For each event, the organizers provided a set of
annotated PubMed abstracts, which could be used by the participants to train
their models. Afterwards, a separate validation set was provided, allowing par-
ticipants to evaluate their predictions, and finally an independent test set was
provided to which all participants were evaluated.

In this work, we describe a machine learning approach that uses graph-based
features from sentence representations to detect these different types of inter-
actions, and subsequently uses them to construct an integrated network that
contains all high-confidence predictions. The remainder of the manuscript is
structured as follows. First we elaborate on the methodology we used to convert
these problems into a machine learning setting, outlining the general prepro-
cessing of the documents, the applied machine learning techniques, and the final
postprocessing to ensure a high-precision approach. Next, we present the results
of this analysis: the evaluation of the whole framework on the BioNLP’09 eval-
uation and test set, and the construction of an integrated network using these
predictions. We conclude by highlighting future perspectives and challenges that
remain in this domain.

2 Methods

The core part of the BioNLP’09 challenge concerned the automatic detection and
characterization of bio-molecular events from text. There are 9 distinct event
types, six of which influence proteins directly, further referred to as ‘Protein
events’, and three which describe ‘Regulation events’. Five of the protein events
are unary: Localization, Gene expression, Transcription, Protein catabolism and
Phosphorylation. The sixth protein event, Binding, can be either related to one
protein (e.g. protein-DNA binding), two proteins (e.g. protein-protein interac-
tion) or more (e.g. a complex). The three types of Regulation events are the
following: Regulation (unspecified), Positive regulation and Negative regulation.
Each of them can be unary or binary. In the latter case, an extra argument
specifying the cause of the regulation is added. Each argument of a Regulation
event can be either a protein or any other event. This offers opportunities to
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Fig. 1. Example of a dependency graph for the sentence ‘MAD-3 masks the nuclear
localization signal of p65 and inhibits p65 DNA binding’. The three events represented
in this sentence are indicated in the respective subgraphs.

detect different levels of interactions, and thus detect Regulation events in an
iterative way.

The detection of Protein and Regulation events can now be stated as a set of
binary classification problems, one for each event. A given potential occurrence
of an event should then be scored by a classification model, which would either
accept or reject the current example as being an instance of the particular event
type. We will now go into more detail on how to transform the unstructured text
data into a well defined classification task.

2.1 Data preprocessing

A challenging problem in text mining is to find an appropriate representation
of the text, allowing machine learning techniques to make use of features that
represent the key information to solve the task at hand. A few steps should be
performed in order to transform the data into such a useful format.

In a first step, informative sentences containing biological entities are selected
(information retrieval), and those key entities are identified and tagged in the
sentence (named entity recognition). Subsequently, a deep syntactic parsing of
each sentence was performed using the Stanford parser [de Marneffe et al, 2006],
resulting in part-of-speech tags and dependency graphs. A dependency graph
models the syntactic structure of a sentence, and is often used in many machine
learning approaches as a structured data type to be used as input for the clas-
sification model [Zelenko et al, 2008,Kim et al, 2008].

Figure 1 shows an example of a dependency graph for the sentence ‘MAD-
3 masks the nuclear localization signal of p65 and inhibits p65 DNA binding’.
This sentence contains three events to be detected by the system: 1) a Binding
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Event type # Features # neg. # pos. % pos.
inst. inst. inst.

Localization 18 121 3415 249 7
Single binding 21 332 3548 522 13

Multiple binding 11 228 2180 185 8
Gene expression 31 332 5356 1542 22

Transcription 30 306 6930 489 7
Protein catabolism 1 883 175 96 35

Phosphorylation 2 185 163 153 48

Unspecified regulation (Unary) 27 915 6076 408 6
Positive regulation (Unary) 48 944 13834 1367 9
Negative regulation (Unary) 16 673 3233 489 13

Unspecified regulation (Binary) 4 239 778 81 9
Positive regulation (Binary) 19 468 5405 249 4
Negative regulation (Binary) 4 166 819 29 3

Table 1. Statistics of the training data set.

event (p65 DNA binding), 2) a Negative Regulation event (MAD-3 masks the
nuclear localization signal of p65) and 3) a higher level Negative regulation event
(MAD-3 inhibits p65 DNA binding), where one of the arguments is a protein
(MAD-3) and the other is an event in itself (p65 DNA binding).

To couple the words occurring in a sentence to a particular event, dictionaries
of trigger words associated to each event were used (e.g. ‘interaction’ for Bind-
ing and ‘secretion’ for Localization). From the training data, we automatically
compiled such dictionaries of triggers for each event type, applying the Porter
stemming algorithm [Porter, 1980] to each trigger. This resulted in some entries
in the dictionaries which were of limited use, such as ‘through’ for Binding, or
‘are’ for Localization. Such words are too general or too vague, and will lead to
many negative and irrelevant instances. For this reason, we manually cleaned
the dictionaries, only keeping specific triggers for each event type.

2.2 Model setup

To extract useful features from the dependency graph, we used a rich feature rep-
resentation based on our earlier work on predicting protein-protein interactions
[Van Landeghem, 2008b]. The feature sets are a combination of information de-
rived from the dependency tree (such as properties of the subgraph covering the
event and lexical information of the trigger words) and information concerning
the occurrence of words in the subgraph. The following features were extracted:

– A bag-of-words (BOW) approach which looks at all the words that appear at
a vertex of the subgraph. This automatically excludes uninformative words
such as prepositions. Here we used stemmed trigrams (succesions of three
words) as BOW features.
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– Lexical and syntactic information of triggers (stemmed versions of each word,
as well as the associated part-of-speech tag generated by the parser).

– Size of the subgraph.
– Length of the sub-sentence.
– Extra features for Regulation events, storing whether the arguments are

proteins or events, and specifying the exact event type.
– Vertex walks which consist of two vertices and their connecting edge. For

these patterns, again lexical as well as syntactic information is kept. When
using lexical information, protein names and triggers were blinded in order
to extract more general patterns (e.g. ‘trigger nsubj protx’ which expresses
that the given protein is the subject of a trigger).

The resulting datasets are inherently high-dimensional and very sparse. Ta-
ble 1 shows the statistics of the training set for all event types. To deal well with
these sparse, high-dimensional and class imbalanced datasets, SVMs are a nat-
ural choice for the classification model [Boser et al, 1992]. We used the LibSVM
implementation of WEKA for our experiments, using the radial basis function
(RBF) kernel as a default. As we were confronted with a separate validation and
test set, only an internal 5-fold crossvalidation loop on the training data was used
to optimize the C-parameter of the SVM, and the classification performance on
the validation and test sets were used to assess model performance.

Finally, a number of custom-made post-processing modules were applied to
the resulting predictions, aiming to further reduce false positives and hence im-
prove the precision of our method. These include removing the weakest pre-
dictions if multiple events were predicted for the same trigger word, as well as
reducing the number of predictions based on overlapping trigger words.

2.3 Integrated network construction

We take a graph based approach to combine the predictions of the different Pro-
tein and Regulation events. Consider a set of interaction events {I1, I2, · · · , IN}
to integrate into a network. We can then associate to each of the events Ii a
graph Gi, obtained using the predictions of the SVM model for event Ii. Note
that there exists a heterogeneity in the graphs, as there might be multiple edges
between two nodes in a graph (due to more than one prediction for a certain
edge), and that some of the edges may be directed (e.g. A regulates B) while
others may be undirected (e.g binding of C and D). Furthermore, all edges are
weighted by the confidence of the associated prediction (see further).

A convenient representation for each graph Gi is its associated matrix Gi(jk)
where each entry in the matrix is a set of weigthed connections between node j
and node k. If there is no edge between node j and node k, then Gi(jk) = ∅.
For undirected edges, the associated weight wjk is represented both in Gi(jk)
and Gi(kj), while for directed edges the weight is only added to the set repre-
senting the correct direction, this representation thus being a generalized form
to combine both directed and undirected information.
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Event type Validation set Test set
Recall Precision F-score Recall Precision F-score

Localization 77.36 91.11 83.67 43.68 78.35 56.09
Binding 45.16 37.21 40.80 38.04 38.60 38.32

Gene expression 70.79 79.94 75.08 59.42 81.56 68.75
Transcription 60.98 75.76 67.57 39.42 60.67 47.79

Protein catabolism 80.95 89.47 85.00 64.29 60.00 62.07
Phosphorylation 68.09 88.89 77.11 56.30 89.41 69.09

Regulation 23.67 41.67 30.19 10.65 22.79 14.52
Positive regulation 21.56 38.00 27.51 17.19 32.19 22.41
Negative regulation 30.10 41.26 34.81 22.96 35.22 27.80

Table 2. Performance evaluation of all events for the validation and test datasets.

The weights on the edges are obtained by the classification model. For the
SVM models, the distance to the hyperplane of each prediction is scaled between
0 and 1 such that the prediction threshold above which to decide on a positive
prediction (this threshold varies per event) corresponds to a weight of 0.5.

It has to be noted that for some unary events, we may only know the effect,
but not the causal node. In these cases, we introduce an artifical causal node
for the effect node, which may be filled in later when more text is analysed. An
integrated network can then be constructed by aggregating all matrices Gi(jk)
into a three-dimensional tensor T (jkl) with dimensions M×M×N , where M is
the cardinality of the union of all nodes in Gi, i = 1 · · ·N and N is the number of
events to integrate. The tensor entry T (jkl) represents a connection from node
j to node k for event type l. For visualisation purposes, we only keep all positive
predictions, and discard all edges for which T (jkl) < 0.5.

3 Results

3.1 Predictive performance

To evaluate predictive performance, participants of the BioNLP’09 challenges
could make use of a validation set to eventually finetune some parameters of their
systems. However, performance could only be measured indirectly by submitting
the predictions through a web interface, which then returned the evaluation
measures (recall, precision and F-score). This only allowed for a rough, manual
finetuning of some of the systems parameters, as an automatic exploration of
parameter settings using this web interface was not possible. In our case, we
only finetuned for each event the prediction threshold above which to consider
a prediction to be positive.

Similarly, the final results on the test set were also assessed in a blind way:
participants could only upload their predictions for this set one time, and after
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Team Protein Events Binding Regulation All

UTurku 70.21 44.41 40.11 51.95
JULIELab 68.38 41.20 34.60 46.66
ConcordU 61.76 27.20 35.43 44.62

UT+DBCLS 63.12 31.19 32.30 44.35
VIBGhent 64.59 38.32 22.41 40.54

UTokyo 55.96 41.10 20.09 36.88
UNSW 55.39 28.92 20.90 34.92
UZurich 53.66 33.75 19.89 34.78

ASU+HU+BU 56.82 27.49 09.01 32.09
Cam 51.79 18.14 15.79 30.80

Table 3. Performance comparison for the top ten performing teams. Numbers shown
denote the F-measure for the three types of events (columns Protein, Binding, and
Regulation), as well as the overall performance (column All).

the submission deadline all evaluations were returned to the participants. Ta-
ble 2 shows the evaluation measures for our system on both the validation (using
optimized thresholds) and test set.

As can be expected, performance on the test set is lower than on the vali-
dation set, the decrease in F-measure ranging from only about 2% for Binding
events, to 27% in the case of Localization events. In general, we achieve a high
precision for Protein events: almost all results achieve a precision of 60% or more.
Another trend is the fact that predicting Protein events achieves much higher
performance than the prediction of Regulation events, a phenomenon that was
observed by all participants in the challenge. This can be explained by the fact
that the prediction of Regulation events largely depends on predicted Protein
events (e.g. for higher level regulation events), thus causing false positives of pre-
dicted Protein events to cause even more false positive higher level regulation
events.

To put these results into the context of the BioNLP’09 challenge, Table 3
compares the results of the ten best performing teams, out of 24 participating
teams. Our team (VIBGhent) was ranked third for detecting Protein Events,
fourth for detecting Binding Events, and fifth for detecting Regulation Events,
resulting in an overall fifth ranking.

3.2 Constructing integrated networks

We created the tensor T (jkl) for a set of six events {I1, I2, I3, I4, I5, I6} =
{Positive regulation, Negative regulation, Unspecified regulation, Binding,
Transcription, Phosphorylation}. Figure 2 shows a visualization of a subgraph of
the integrated network, where the edge thickness corresponds to the prediction
confidence of the interaction, and colors display different types of interactions
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Fig. 2. Visualization of a subgraph of the integrated network, constructed on the com-
bined results of the validation and the test set.

(black for Binding and unspecified Regulation events, orange for Phosphory-
lation, blue for Transcription and green/red for Positive/Negative Regulation
events). Furthermore, Regulation events are displayed by dashed lines, and Pro-
tein events by full lines.

In a subsequent stage, the tensor T (jkl) can be used to infer new biolog-
ical knowledge, such as indirect interactions and pathways. An example of an
indirect interaction, derived from the network depicted in Figure 2 is the pos-
itive regulation of GM-CSF by Tax, which is in turn negatively regulation by
Tax UNRC, which suggests an indirect regulation of GM-CSF by Tax UNRC.

4 Conclusions and future work

In this work we presented a text mining approach that extracts various types
of interactions from scientific literature. This information was used in a second
stage to construct integrated networks, using the strength of the predictions as
confidence weights for the connections in the network. As the application of text
mining techniques for such problems is still in its childhood, improving the pre-
dictive performance of these techniques will remain a key challenge, as well as
recognizing more adequately the specific type of interaction (e.g. protein-protein,
protein-DNA, RNA-protein). Furthermore, we already performed some prelimi-
nary work on detecting speculation and negation of biological events, which will
be useful to detect modes of (un)certainty about certain facts stated.
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From a data integration point of view, we aim to combine the results obtained by
text mining with interactions identified by other data sources (either experimen-
tally verified or predicted) in order to increase the robustness of the networks.
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