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ABSTRACT
Summary: Network motifs in integrated molecular networks

represent functional relationships between distinct data types. They

aggregate to form dense topological structures corresponding to

functional modules which cannot be detected by traditional graph

clustering algorithms. We developed CyClus3D, a Cytoscape plugin

for clustering composite 3-node network motifs using a 3-dimensional

spectral clustering algorithm.

Availability: Via the Cytoscape plugin manager or

http://bioinformatics.psb.ugent.be/software/details/CyClus3D.

Contact: tom.michoel@frias.uni-freiburg.de

1 INTRODUCTION
In systems biology, the cell is modeled as an integrated network
with multiple types of interactions, e.g. protein-protein, protein-
DNA, protein-metabolite or genetic interactions (Zhu et al., 2007).
Cellular functions are carried out by independently functioning units
called modules (Hartwell et al., 1999), which, in graph-theoretical
terms, correspond to clusters of densely connected nodes, and
a multitude of algorithms have been developed to identify such
clusters in undirected graphs (Fortunato, 2010). A major problem
remains how to harness the multi-layered information contained
in different interaction networks in order to identify biologically
more realistic topological modules. In the naive Bayes approach,
multiple interaction types are overlayed to create a single integrated
association network which can be clustered by traditional means
(Lee et al., 2004). In the SAMBA approach, heterogeneous data
types are merged in a single bipartite gene-property graph in which
modules are defined as dense subgraphs (Tanay et al., 2004).
While SAMBA has the advantage of preserving the identity of
each interaction type, information is inevitably lost by representing
complex networks as bipartite graphs.

We developed CyClus3D, a Cytoscape (Shannon et al., 2003)
plugin for the identification of modules in integrated networks
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which uses network motifs to query a 3-dimensional spectral
clustering algorithm. Network motifs are frequently occuring
subgraphs in regulatory (Shen-Orr et al., 2002) or integrated
networks (Yeger-Lotem et al., 2004; Yu et al., 2006), which
aggregate to form topological modules (Kashtan et al., 2004; Zhang
et al., 2005). Each network motif defines a relationship between
heterogeneous data types, with a distinct information-processing
role or functional interpretation (Shen-Orr et al., 2002; Zhang et al.,
2005; Zhu et al., 2007). Hence, CyClus3D identifies modules
composed of multiple interaction types which reflect regulatory,
signaling or compensatory pathway mechanisms in addition to the
stable protein complexes found by traditional clustering algorithms.

2 METHODS
2.1 Network motif clustering algorithm
We consider a system modeled by N types of pairwise interactions which
may be directed or undirected. For a given 3-node network motif whose
edges can be of any type, we denote the list of all motif instances as a 3-
dimensional array T with Tijk = 1 if the system contains a motif between
nodes (i, j, k), and 0 otherwise. We define a motif cluster by three sets of
nodes (X1, X2, X3) with an aggregation score

S(X1, X2, X3) =

�
i∈X1,j∈X2,k∈X3

Tijk

|X1|1/p|X2|1/p|X3|1/p
, (1)

where |X| is the number of nodes in X and p > 1 will act as an (inverse)
resolution parameter. To maximize S, we first determine the best rank-1
approximation to T , i.e. find real-valued vectors (x1, x2, x3) maximizing

R(x1, x2, x3) =

�
ijk Tijk x1,ix2,jx3,k

�x1�p�x2�p�x3�p
,

where �x�p = (
�

i x
p
i )

1/p is the p-norm of x. A maximizer of R is found
by solving the Euler-Lagrange equations

λxp−1
1,i =

�

jk

Tijk x2,jx3,k, (2)

subject to the constraint �x1�p = 1 and similarly for the other dimensions
(De Lathauwer et al., 2000). The solutions (x1, x2, x3) are interpreted
as cluster membership weight vectors and converted to a motif cluster by
taking a suitable threshold on the weights. It can be shown that the optimal
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Fig. 1. CyClus3D screenshot with the workflow (A), a multi-cluster network
with a node properties menu (B) and a single-cluster network (C).

threshold is the one which minimizes �xm − uXm�p, where uX,i =
|X|−1/p for i ∈ X and 0 otherwise (see Supplementary Material). Having
thus found a high-scoring motif cluster, we remove it from the list of motif
instances T and repeat the procedure until no more instances remain. The
best rank-1 approximation to the motif index array plays the same role as
the dominant eigenvector of a network adjacency matrix and our algorithm
can be understood as a generalization of 2-dimensional spectral clustering
algorithms (Inoue and Urahama, 1999).

2.2 Implementation
Network motifs are often invariant under the permutation of some of their
nodes. Thus, motif instances need to know their inherent symmetries, e.g.
to efficiently determine the equality of two instances. We generated the
motif symmetry groups offline and used a code generator to generate Java
classes which are equipped with optimized methods for comparing and
storing motifs. To locate all motif instances, we developed a motif finder
which works on the principle of motif extensions. It allows quick pruning
of branches in the search tree and is significantly faster than other subgraph
matching algorithms (see Supplementary Material). To solve eqs. (2) we
implemented a power algorithm (De Lathauwer et al., 2000). The Java
classes for network motif enumeration and clustering are independent of
the Cytoscape visualisation classes and can be plugged into other network
analysis and visualisation environments as well.

3 APPLICATION
To illustrate the workflow of CyClus3D (postfix for 3-Dimensional
Clustering in Cytoscape), we imported an integrated network of
physical, genetic and signaling interactions between kinases and
phosphatases in yeast (Breitkreutz et al., 2010; Fiedler et al.,
2009) (data available as Supplementary Material). In the CyClus3D
control panel (Fig. 1A), a query motif and one or more input
networks are selected, interaction types are assigned to each edge
and a value for the resolution parameter r = 1/p (cfr. Methods)
and the minimal number of motif instances in a cluster are set. An
edge type is inferred to be directed if the edge in the motif it is
assigned to is directed. The resolution parameter allows to vary the
typical size and density of a cluster. At low r, the aggregation score
is maximized by large sets of loosely connected motifs, while at
high values, high-scoring motif clusters are small and dense. In
our experience, the intermediate value r = 0.5 balances size and
density and is recommended as a starting value (see Supplementary
Material).

After running the algorithm, CyClus3D opens a new network
containing all clustered motifs. For instance, Fig. 1B shows all
clusters of genetically interacting, copointing kinases (with the
settings of Fig. 1A). By right clicking on a node of interest, we
can create new networks for the clusters containing this node, while
through the CyClus3D entry in the Plugins menu, new networks
can be created for all clusters. By default, edges in multi-cluster
networks are colored by their cluster membership (‘Cluster View’,
Fig. 1B), while in single-cluster networks they are colored by
interaction type, with the colors matching the edge assignments in
the control panel (‘Interaction View’, Fig. 1C). Via the VizMapper
panel, the user can easily switch between these two visual styles.
Multiple motifs can be clustered sequentially and newly found
clusters either are added to or replace the existing clustered network
(to add them, all query motifs must be formed from subsets of the
same three edge types and the Interaction View will be updated to
the latest edge assignment).

By integrating heterogeneous types of molecular interaction data,
CyClus3D identifies modules which reflect regulatory, signaling or
compensatory functions which are not found by clustering each
network in isolation (Zhang et al., 2005). The underlying algorithms
are highly efficient and allow further extension. In particular,
future versions will extend CyClus3D towards higher-dimensional
motifs, with applications in the domain of network alignment and
comparison.
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