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ABSTRACT

Motivation: Promoter prediction is an important task in genome
annotation projects, and during the past years many new promoter
prediction programs (PPPs) have emerged. However, many of these
programs are compared inadequately to other programs. In most
cases, only a small portion of the genome is used to evaluate
the program, which is not a realistic setting for whole genome
annotation projects. In addition, a common evaluation design to
properly compare PPPs is still lacking.
Results: We present a large-scale benchmarking study of 17 state-
of-the-art PPPs. A multi-faceted evaluation strategy is proposed that
can be used as a gold standard for promoter prediction evaluation,
allowing authors of promoter prediction software to compare their
method to existing methods in a proper way. This evaluation strategy
is subsequently used to compare the chosen promoter predictors,
and an in-depth analysis on predictive performance, promoter class
specificity, overlap between predictors and positional bias of the
predictions is conducted.
Availability: We provide the implementations of the four protocols,
as well as the datasets required to perform the benchmarks to the
academic community free of charge on request.
Contact: yves.vandepeer@psb.ugent.be
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Promoter prediction programs (PPPs) aim to identify promoter
regions in a genome using computational models. In early work,
promoter prediction focused on identifying the promoter of (protein-
coding) genes (Fickett and Hatzigeorgiou, 1997), but more recently
it has become clear that transcription initiation does not always
result in proteins, and that transcription occurs all over the genome
(Carninci et al., 2006; Frith et al., 2008; Sandelin et al., 2007).

One important question is what the different PPPs are actually
trying to predict. Some programs aim to predict the exact location
of the promoter region of known protein-coding genes, while
others focus on finding the transcription start site (TSS). Recent
research has shown that there is often no single TSS, but rather
a whole transcription start region (TSR) containing multiple TSSs
that are used at different frequencies (Frith et al., 2008). This article
analyzes the performance of 17 programs on two tasks: (i) genome-
wide identification of the start of genes and (ii) genome-wide
identification of TSRs.

Most PPPs that are published make use of a tailored evaluation
protocol that almost always proclaims the new PPP outperforming
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all others. Our aim is provide an objective benchmark that allows
us to test and compare PPPs. In the past few years, a number of
papers have evaluated promoter prediction software. The earliest
work indicated that many of the early PPPs predicted too many
false positives (FPs) (Fickett and Hatzigeorgiou, 1997). A later
genome-wide review included a completely new set of promoter
predictors and introduced an evaluation protocol based on gene
annotation (Bajic et al., 2004). This protocol has later been used
to validate promoter predictions for the ENCODE pilot project
(Bajic et al., 2006). Sonnenburg et al. (2006) proposed a more
rigorous machine-learning-inspired validation method that uses
experimentally determined promoters from DBTSS, a database of
promoters. The most recent large-scale validation of PPPs included
more programs than any of the earlier studies and introduced for
the first time an evaluation based on all experimentally determined
TSSs in the human genome (Abeel et al., 2008a, b).

While many issues have been solved, there is still a large
number of challenges that remain open for debate in evaluating
the performance of promoter prediction software. Generally, we
can distinguish two main approaches in promoter prediction. The
first approach assigns scores to all single nucleotides to identify
TSSs or TSRs. Usually, the scoring is done with a classification
algorithm that is typically validated using cross-validation. This
cross-validation provides a first insight in to the performance of
the model and can be used to optimize the model parameters on
a training set. The scores obtained from these techniques can be
used as input for a genome annotation pipeline, where they will
be aggregated in gene models. Because of their design, this type
of promoter predictors will always work on a genome-wide scale.
Programs using this approach include ARTS (Sonnenburg et al.,
2006), ProSOM (Abeel et al., 2008b) and EP3 (Abeel et al., 2008a).
The second approach identifies a promoter region without providing
scores for all nucleotides. Typically, this type of programs will output
a start coordinate and a stop coordinate of the promoter, and a score
that indicates the confidence in the prediction. In rare cases, only one
coordinate is given as TSS. For two programs no score is provided
(Wu-method and PromoterExplorer). Within this approach, we can
distinguish two subclasses of programs: the ones that work on a
genomic scale and the ones that do not. The latter are used to identify
the promoter of a single gene. In this work we will not consider these
programs, because they are usually distributed as a website and are
thus not suited for large-scale analyses.

PPPs can be applied to identify the promoter of known genes,
or they can be used to identify the start of any transcription event,
regardless of what the final fate of the transcribed sequence is. For
each application, we propose two evaluation protocols that can be
used to assess the performance of a program for that particular
application. Each application has an associated reference dataset
which the protocol will use to evaluate a PPP. We use the same
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type of reference datasets that have previously been used to validate
promoter predictions (see section 2 for details).

Several methods have been proposed to validate promoter
predictions. Cross-validation on a small set of promoter and non-
promoter sequences is sometimes used to validate a PPP (Xie et al.,
2006), but the results are often an overestimation of the performance
on a complete genome (Bajic et al., 2004). Other methods make
use of gene annotation to evaluate promoter predictions, based on
the rationale that the start of a gene corresponds with a promoter
(Bajic et al., 2004, 2006). However, it is clear that not all promoters
are associated with protein-coding genes and, furthermore, not all
transcription events start at the beginning of a gene. TSSs have
been observed at the start of internal exons or at the 3′ end of a
gene (Carninci et al., 2006). More recently, two large resources for
promoter research in the human genome have been used to validate
promoter predictions. The first source is the DBTSS database,
containing a large set of experimentally determined promoters
(Wakaguri et al., 2008). The second source is a genome-wide
screening of the human genome using the CAGE technique (Shiraki
et al., 2003), providing all TSSs in the genome. The latter source
is the most valuable as it is an exhaustive screening for all possible
TSSs.

The remainder of this work proposes a set of protocols and
datasets to use when validating promoter prediction software. To
illustrate our methods, we analyzed 17 PPPs with the proposed
validation schemes. While the methods are applicable to any
genome, we focus in the current article on the human genome.
Finally, we highlight some challenges that arise in selecting the best
PPP for a particular task.

2 MATERIALS AND METHODS

2.1 Datasets
We used release hg18 of the human genome for all analyses. For the
validation protocols, we use the RefSeq genes downloaded from the UCSC
table browser. This set includes 23 799 unique gene models and is further
referred to as the gene set. We also use the CAGE tag dataset from Carninci
et al. (2006). The latter was preprocessed to aggregate all overlapping tags
into clusters, resulting in 180 413 clusters containing a total of 4 874 272
CAGE tags. A cluster is considered to be a TSR if it contains at least two
tags. Singleton clusters are removed as these could be transcriptional noise.
This dataset will be referred to as the CAGE dataset.

2.2 Promoter prediction software
We used two criteria to select the PPPs to include in this analysis: (i) the
program or predictions should be available without charge for academic use,
and (ii) the program should be able to process the complete human genome
or predictions should be available for the complete genome. At least 17
programs (Table 1) fulfilled these criteria and have been included. Details
for settings and prediction extraction methods for each program are included
in the Supplementary Material.

2.3 Evaluation protocols
In this article, we propose four protocols to evaluate the quality of predictions
made by PPPs. The first two protocols are bin-based protocols, inspired by
Sonnenburg et al. (2006). The latter two are distance based, inspired by Abeel
et al. (2008b). Figure 1 shows a schematic overview of how each protocol
determines the prediction performance.

For the explanation of each protocol we assume that we have a set
of predictions. Furthermore, we have a reference set (the gene set or the

Table 1. Overview of all the programs analyzed

Name References

ARTS Sonnenburg et al. (2006)
CpGcluster Hackenberg et al. (2006)
CpGProD Ponger and Mouchiroud (2002)
DragonGSF Bajic and Brusic (2003)
DragonPF Bajic et al. (2002)
EP3 Abeel et al. (2008a)
Eponine Down and Hubbard (2002)
FirstEF Davuluri et al. (2001)
McPromoter Ohler et al. (2000)
NNPP2.2 Reese (2001)
Nscan Gross and Brent (2006)
Promoter 2.0 Knudsen (1999)
PromoterExplorer Xie et al. (2006)
PromoterScan Prestridge (1995)
ProSOM Abeel et al. (2008b)
PSPA Wang and Hannenhalli (2006)
Wu-method Wu et al. (2007)

CAGE set) that is considered to be the ground truth. The binning protocols
(1A and 1B) are more machine-learning oriented. Each bin has two labels:
one provided by the reference set and the other provided by the PPP.
Performance can be assessed based on these labels. The distance protocols
(2A and 2B) calculate the distance between a reference item and the closest
prediction and will use this to calculate the performance. Protocols ending
in A use the CAGE data as reference, while the ones ending in B use the
gene set. Note that the B protocols discard all intergenic predictions from
the evaluation. Intergenic prediction are removed because the gene set only
contains known genes, so we have no idea which of the intergenic prediction
are related to unknown genes or other types of transcription (Bajic et al.,
2004).

2.3.1 Bin-based validation Evaluation protocol 1A: this protocol uses the
CAGE dataset as reference. We divide the genome in bins of 500 nt. Next,
we check for each bin whether it overlaps with the center of a TSR. If it does,
we label this bin as a positive TSR. With this labeling we can determine the
number of true positives (TPs), FPs, false negatives (FNs) and true negatives
(TNs). Each bin that is both labeled by a prediction and a TSR is considered
a TP. A TN is a bin that is not labeled as predicted nor labeled as TSR. A FP
is a bin that is labeled as predicted but not labeled as TSR. Finally, a FN is
a bin that is not labeled as predicted but is labeled as TSR. From these we
calculate the precision and recall with the following formulas.

precision = TP

TP + FP

recall = TP

TP + FN

Evaluation protocol 1B: this protocol is a variant of protocol 1A, but it
uses the gene set as reference instead of the CAGE dataset. This protocol
resembles the one used in Sonnenburg et al. (2006). We label all the bins
overlapping the start of a gene as a positive gene start bin. All bins that
overlap with the gene, but not with the start of that gene, are labeled as
negative gene start bins. Bins that do not overlap with a gene or gene start
are ignored in the analysis.

A TP is a bin labeled as predicted and as a positive gene start. A TN is a
bin not labeled as predicted and labeled as a negative gene start. A FP is a
bin labeled as predicted and as a negative gene start. Finally, a FN is a bin
not labeled as predicted and labeled as a positive gene start. The calculation
of precision and recall are the same as in protocol 1A. Note that this protocol
ignores intergenic predictions that are not close to a gene start.
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Fig. 1. Visual representation of how the different protocols work. The panel numbers refer to the protocol identifiers. Protocols starting with 1 are based on
binning, the ones starting with 2 on distance. Protocols ending in A use the CAGE data as reference, and those ending in B the gene set. More details can be
found in the main text.

2.3.2 Distance-based validation Evaluation protocol 2A: this protocol
aims to validate predictions with the CAGE dataset as a reference. We
determine three scores: (i) the number of predictions (totalPredictions); (ii)
how many of these predictions are correct (correctPredictions); and (iii) how
many TSRs are discovered by the predictions (discoveredTSR). A prediction
is correct if the distance to the closest TSR is smaller than 500 nt. We use
500 nt as this is the same value as the binning approach and the value has
been used in the past for this type of analysis (Abeel et al., 2008a, b). A TSR
is considered discovered if there is at least one prediction less than 500 nt
away from the TSR. The CAGE dataset has 180 413 TSRs (totalTSR).

We then define recall and precision as follows:

precision= correctPredictions

totalPredictions

recall= discoveredTSR

totalTSR

Evaluation protocol 2B: this is a modification of protocol 2A to check
the agreement between TSR predictions and gene annotation. This method
resembles the method used in the EGASP pilot-project (Bajic et al., 2006).

We determine three scores: (i) number of predictions (totalPredictions);
(ii) how many of these predictions are correct (correctPredictions); and (iii)
how many genes are discovered by the predictions (discoveredGenes). All
predictions that are not near the start of a gene or do not overlap with a gene
are discarded. A prediction is correct if the distance to the closest start of a
gene is smaller than 500 nt. A start of a gene is considered discovered if there
is at least one prediction less than 500 nt away from the TSR. Predictions that
overlap a gene, but are not within 500 nt of the start are wrong predictions.

There are 23 799 genes in the reference set (totalGenes).

precision= correctPredictions

totalPredictions

recall= discoveredGenes

totalGenes

As in protocol 1B, this method ignores intergenic predictions that are not
close to a gene start.

2.4 Performance measures
Precision and recall have been defined for each protocol as their definition
is dependent on the protocol. Unfortunately, it is impossible to compare two
precision–recall pairs from different programs as there is a trade-off between
the precision and recall. A solution that is often used in machine learning is
the use of ROC curves. We will use a variant of this method called PRCs.
Instead of plotting the TP rate against the FP rate, we plot the recall against the
precision. The resulting graphs are comparable and provide a full overview
of the potential of the PPP. So, to fairly assess the performance of each PPP,
we need to calculate all possible precision–recall pairs. This can be done by a
moving threshold on the score of the predictions made by a program. We use
500 thresholds equally spaced between the minimum and maximum score
for each PPP. The area under the auPRC is calculated using the trapezoid
method on all precision–recall pairs for each algorithm.

To quantify the performance of a PPP over all protocols with a single
metric we introduce the PPP score, which is the harmonic mean of the auPRC
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Table 2. Overview of the results of all protocols on all PPPs

Name 1A 1B 2A 2B Number of predictions Threshold F-score PPP score

1 ARTS 0.19 0.36 0.47 0.64 432117 0.56362 0.47 0.34
2 CpGcluster 0.09 0.22 0.28 0.44 22777 42.24167 0.38 0.18
3 CpGProD 0.06 0.16 0.32 0.04 20810 0.25473 0.45 0.08
4 DragonGSF 0.06 0.16 0.25 0.42 100,046 0.26 0.45 0.14
5 DragonPF 0.05 0.08 0.18 0.26 747571 0.34 0.32 0.09
6 EP3 0.18 0.23 0.42 0.51 67807 −0.048 0.44 0.28
7 Eponine 0.14 0.29 0.41 0.57 1320964 0.986 0.45 0.27
8 FirstEF 0.08 0.23 0.28 0.52 44818 0.92938 0.28 0.18
9 McPromoter 0.04 0.10 0.12 0.23 43818 −0.01347 0.25 0.08
10 NNPP2.2 0.01 0.01 0.01 0.01 1962552 0.99 0.08 0.01
11 Nscan 0.07 0.27 0.22 0.51 23360 200.558 0.34 0.17
12 Promoter 2.0 0.01 0.01 0.02 0.01 1923610 0.5 0.10 0.01
13 PromoterExplorer 0.02 0.05 0.07 0.12 134282 NA 0.25 0.04
14 PromoterScan 0.02 0.05 0.06 0.13 248671 57.51 0.20 0.04
15 ProSOM 0.18 0.25 0.42 0.51 63228 0.65302 0.44 0.29
16 PSPA 0.05 0.17 0.16 0.33 25602 85.20467 0.28 0.11
17 Wu-method 0.04 0.10 0.13 0.24 23934 NA 0.31 0.08

The first two columns provide the index and the name of the PPPs. The third through sixth column show the area under the precision–recall curve (auPRC) for each of the protocols.
The seventh column displays the number of predictions for the optimal threshold as determined by protocol 2A. The eighth column shows the optimal threshold determined with
protocol 2A and the next column the corresponding F-score. The tenth column gives the final score for the promoter predictor as the harmonic mean of the auPRC scores for the
four protocols. PPP scores over 25% are indicated in bold. These are the programs we used for in-depth analysis.

of the four protocols.

PPP score= 4
1

auPRC(1A)
+ 1

auPRC(1B)
+ 1

auPRC(2A)
+ 1

auPRC(2B)

The harmonic mean is used as it reduces the effect of high outliers, while
at the same time it increases the effect of low scores. As such it will favor
programs that provide a stable performance over all protocols.

For the in-depth analysis, we can only consider the predictions at
one threshold. The optimal threshold is thus determined by calculating
the F-score, i.e. the harmonic mean of precision and recall, for each
precision–recall pair, and selecting the threshold for which the F-score is
maximal.

F = 2×precision×recall

precision+recall

Determining the optimal threshold is done on the precision–recall pairs
obtained by protocol 2A. We used protocol 2A, because it can be considered
the most comprehensive and correct protocol: it uses the CAGE dataset (most
comprehensive), and it uses the actual overlap and distance between TSRs
and prediction (most correct).

2.5 Classes of promoters
We classify promoters in so-called shape classes using the method described
in Carninci et al. (2006). Single peak (SP) promoters are TSRs that have
all tags closely grouped together (the majority of TSSs are not >4 nt apart).
The second category contains the promoters that have a broad distribution
of TSSs (BR). To differentiate between different cases in the broad category,
were two additional defined classes referred to as ‘broad distribution with
a dominant peak (PB)’ and ‘promoters with a multi-modal distribution of
TSSs (MU)’.

The shape class of a tag cluster is determined by testing a condition for
each shape class in a particular order. The first test that succeeds indicates the
shape class. We first test for SP, next for PB and finally for MU. If none of
the tests succeeds, the promoter is assigned the BR label. A TSR has the SP
shape if over 50% of all individual tags starts no further than 4 nt apart. The
PB shape is defined as any TSR for which the ratio of the number of tags at
the two most commonly used locations exceeds 2. A TSR has a multi-modal

distribution if the distance of any two subsequent 5% percentiles of the tag
distribution exceeds 25% of the total length of the TSR.

We consider only clusters with at least 100 tags. When applied to our
pre-processed CAGE dataset, 5570 clusters have at least 100 tags. Of these
clusters, 944 have a sharp peak (SP), 498 have a broad dominant peak (PB),
3188 clusters have a multi-modal distribution (MU) and 940 do not fit in any
of the other classes (BR).

Another subdivision of TSRs was made to assess the bias of PPPs toward
rare and common transcription initiation event. To assess the performance on
TSRs that are rarely used and TSRs that are commonly used, we create two
datasets. The set with rarely used TSRs contains all TSRs that have exactly
2 tags, while the commonly used TSRs have at least 25 associated tags. This
results in 14 363 common TSRs and 85 519 rare TSRs.

3 RESULTS

3.1 Benchmarking PPPs
We have applied the four protocols described in the previous section
to 17 PPPs that have been published in the literature, and for
which we were able to procure genome-wide predictions on the
human genome or for which the software is available for free for
academic use. We ran the latter programs ourselves on a grid,
requiring over 30 000 CPU hours to complete the human genome.
For 15 programs this resulted in predictions with scores, while for 2
programs we only have predictions without a score (Wu-method and
PromoterExplorer). Results of this analysis are reported in Table 2.

In earlier work, we used the F-score to identify the PPP that
performs best on a number of datasets. However, there are some
drawbacks on using the F-score as single criterion. First of all, to
compare programs fairly, one has to optimize the threshold of the
program on the validation set. Even when this is done properly, the
optimized F-score is only a single point on the PRC that can be
obtained with the program. Hence, the F-score does not provide
any insight in to the full potential of the PPP under investigation.
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Fig. 2. PRCs for all PPPs when evaluated with protocol 2A.

For some applications one would be more interested in how the
PPP behaves under very high precision conditions while other
researchers could be interested in the behavior at very high recall
rates. As suggested before (Sonnenburg et al., 2006), the fairest
way to compare PPPs is by calculating the complete PRC and then
computing the area under this curve. Figure 2 shows the PRCs for
all 17 PPPs for protocol 2A, and the remaining protocols result in
similar plots (data not shown). In a PRC, graphs most to the top-
right indicate the better performing programs. We see that there are
three graphs that dominate the first part of the plot; these are the
graphs corresponding to the ARTS, EP3 and ProSOM programs. At
about 20% precision, the graph of Eponine starts dominating, but
ARTS, EP3 and ProSOM remain closeby. PromoterExplorer and the
Wu-method do not have a full graph, as they do not provide scores;
they are represented by a single point in the plot.

To be able to calculate the full area under the curve, we included
one extra point to close the curve. This added point has the same
recall as the point with the lowest precision in the curve, but
has precision value 0. Adding this point allows the auPRC to be

calculated for each PPP (including those with only one precision–
recall pair) and it will put programs that do not cover the complete
precision spectrum on equal footing with programs that do cover it.
The graphs of Eponine and DragonPF indicate that auPRC for those
programs may be underestimated. However, we ran the programs
at the lowest threshold that would work on our system. So it seems
that Eponine and DragonPF do not allow us to explore them in an
extreme setting with very low precision. On the other extreme of
the plot, we see that the graph of some programs drops to 0 from
a relatively high recall score. This indicates that some programs do
not allow us to explore extreme high precision scores.

The area under the curve is reported in Table 2 in the columns
marked with a protocol identifier. Each of the four protocols
assigns the highest auPRC to ARTS. To aggregate the results of
the four protocols in one measure, we calculate the harmonic
mean of the auPRC of the four protocols and report it as the PPP
score in the last column of Table 2. This score is an indication
of the overall performance of the PPP on different tasks and
using different evaluation algorithms. Four programs have a PPP
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score over 0.25: ARTS, Eponine, EP3 and ProSOM. ARTS clearly
performs best with 34%, while the other three programs are closely
together around 28%. All further analyses were performed on all
17 PPPs, but we only report results for the four best PPPs as
these are the most interesting. The two methods for detection
of CpG islands (CpGcluster and CpGProD) work relatively well
with protocol 2A, especially since they have not been designed
to predict promoters, but rather to detect CpG islands. This again
indicates that CpG islands are a very strong signal for promoter
detection and that the presence of a CpG island is often sufficient
for promoter identification. FirstEF and NScan are two methods
that try to predict more than just the core promoter. FirstEF tries to
identify the structure of the first exon and NScan tries to construct
a complete gene model. This additional gene-oriented modeling
clearly improves the performance of the programs under the 1B
and 2B protocols. In the 1A and 2A protocols, these programs have
lower scores than programs that have a comparable performance on
1B and 2B. Promoter 2.0 and NNPP2.2 obtained total scores of <1%
indicating that these programs are not suited to identify promoters.
Striking is that Eponine, which is around since 2001, is still one of
the only four promoter predictors that obtain a total score above 20%.

3.2 Positional distribution of predictions
Because the evaluation protocols allow a certain distance between
the prediction and the actual TSR, one should always check how well
the predictions are positioned around the target site. In this section,
we analyze the positional specificity with respect to the closest TSR
for the four top performing programs. For the positional specificity
to the closest TSR we use the optimal threshold as determined by
protocol 2A. Figure 3 shows the positional distribution of predictions
relative to the closest TSRs. Note that all TSRs that overlap with a
prediction have distance 0, which explains the peak at position 0 in
the graph. The x-axis represents the distance to the TSR. The y-axis
shows the number of tags (logarithmic scale). We can see that all
programs have by far the largest fraction of the tags overlapping
with predictions. ARTS and Eponine make more predictions that
are not overlapping with the TSR than EP3 and ProSOM, but the
predictions are mostly in the vicinity of the TSR. Further from the
TSR there is little difference between the four programs. Overall,
all four programs have well-localized predictions with respect to the
annotated TSRs.

3.3 Classes of promoters
To analyze the bias of promoter predictors to particular shape classes,
we analyzed the recall obtained by each program for each of the
classes. We use the optimal threshold as determined by protocol
2A. For this threshold, we determine the number of tags of the
shape class that is discovered. For these analyses only the recall is
informative. The precision of a method can only be calculated on
the complete reference set and for this analysis we only use a subset
of the reference.

Table 3 shows the fraction of TSRs of each class that is identified
at the optimal threshold. The scores in the table are the fraction of
tags marked as SP, PB, MU or BR that is recovered by the program.
Single peak TSRs are less recovered by PPPs than any of the broad
categories (BR, PB and MU). The TATA motif is known to be
overrepresented in the SP class and these promoters are commonly
associated with tissue-specific genes, while the BR, PB and MU
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Fig. 3. Positional specificity for predictions around TSRs. The positional
specificity is determined by using the optimal threshold as determined with
protocol 2A.

Table 3. Recall score for each of the top four PPPs on each of the four
promoter classes and on the Rare and Common TSR set

Name SP PB MU BR Rare Common

ARTS 0.58 0.90 0.93 0.95 0.23 0.81
EP3 0.52 0.82 0.85 0.84 0.23 0.74
Eponine 0.69 0.92 0.94 0.96 0.24 0.80
ProSOM 0.51 0.83 0.81 0.83 0.21 0.71

The recall is calculated with the optimal threshold as determined with protocol 2A.

classes are strongly associated with CpG islands, commonly found
in housekeeping genes (Carninci et al., 2006). This indicates that
the current state-of-the-art in promoter prediction is biased toward
housekeeping genes that contain CpG islands.

One caveat with the last analysis is that although we make a
distinction between different TSR shapes, we still look at TSRs that
have at least 100 associated tags, which means that these TSRs have
a high initiation rate. To compare the performance of the four PPPs
on less common TSRs, we use the sets of rarely used and commonly
used TSRs (see Section 2). The fraction of identified TSRs for these
two sets is shown in the last two columns of Table 3. All four PPPs
have a strong bias toward strong TSRs, covered by a lot of tags.

3.4 Pair-wise prediction overlap
To calculate the overlap between predictions made by different
programs, we divided the genome in chunks of 500 nt. The
predictions for each program are determined as predicted regions
that have a score that is higher than the optimal threshold determined
by protocol 2A. Table 4 shows the fraction of predictions that is
shared between two PPPs. In this table, we only included the four
PPPs that obtained a PPP score over 0.25 in the benchmark analysis
presented in Table 2. The value in a cell with column title A and
row title B should be interpreted as the fraction of predictions of
program A that are contained in the predictions of program B. For
example, the value in row 2, column 1 is the fraction of predictions
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Table 4. Pair-wise prediction overlap for the top four programs based on
PPP score

ARTS EP3 Eponine ProSOM

ARTS 0.57 0.29 0.74
EP3 0.36 0.21 0.75
Eponine 0.76 0.85 0.97
ProSOM 0.37 0.59 0.18

Details on the interpretation of the values can be found in the main text.

from ARTS that is also predicted by EP3. In this case, 36% of the
predictions of ARTS are also predicted by EP3.

Some interesting observations can be made from this table. The
row and column marked with Eponine indicates that the majority
of the predictions made by all other programs are contained within
the Eponine prediction set. All other rows indicate that the other
programs generally have at least 25% unique predictions. This last
observation may indicate that the predictions that are not predicted
by the two programs are more likely to be wrong. Another possible
explanation for this phenomenon is that since most PPPs in Table
4 are built on completely different concepts, they make use of
different parts of information available in the sequence. One way
to harness this insight is to aggregate multiple PPPs to use more of
the information that is available in the sequence.

4 DISCUSSION AND CONCLUSION
In this article, we proposed a set of protocols to fairly evaluate
PPPs. The four protocols we described can be used when different
types of data are available. For the A protocols, one needs a set
of experimentally determined TSRs, which is not available for all
species. The B protocols can be used when only gene annotation is
available for the target organism, which should be the case for most
species. Because the A protocols use a more biologically inspired
validation and they do not ignore intergenic predictions, one should
prefer one of the two A protocols. The protocols starting with 2
are more accurate as they use the actual spatial organization of
predictions and reference items, while the protocols starting with 1
reduce this organization to fixed bins. The benchmark should be done
by calculating the complete PRC and computing the area under this
curve. When running more protocols, one can calculate the harmonic
mean of the individual auPRCs as a single score for the PPP.

We benchmarked 17 PPPs using the proposed schema and further
investigated the four PPPs that performed best in the benchmark
in terms of positional preference and prediction bias. While the
performance of the top four is about the same (Table 2), these
four programs work on different principles and were designed for
different tasks. ARTS is designed to score all nucleotides in the
genome, EP3 and ProSOM were designed to score putative TSRs
and Eponine was designed to predict core promoter regions. One
of the differences between the four programs is the number of
predictions they make to obtain their scores. EP3 and ProSOM have
around 65 000 predictions, while ARTS and Eponine have 432 117
and 1 320 964 predictions, respectively. Although there is such a
large difference in prediction count, the final results are about the
same, indicating that a lot of the predictions are redundant. In case
of ARTS, this was to be expected as the program is designed to
score all nucleotides in the genome. For Eponine, the large number

of predictions is unexpected, since that program is meant to identify
complete core promoters. Further investigation may be performed
into the nature of the predictions and the extent of the redundancy.
While our benchmark identified the PPPs that obtain the highest
PPP scores, there are other factors that influence which PPP can
or should be used. The first additional criterion is the availability.
Eponine, EP3, ProSOM andARTS are freely available for download.
A second additional criterion may be the applicability domain of the
software. Eponine and ProSOM have been designed to work for any
mammalian genome, EP3 was designed as a generic predictor for
eukaryotic genomes and ARTS has only been reported to work for
the human genome.

The overlap between the sets of predictions made by the four
programs is limited (Table 4).As a result, each program has a number
of unique predictions indicating that each of the programs has a
different information usage. It would be worthwhile to investigate
how the information of multiple programs can be aggregated.

In conclusion, this article proposes a standard for the evaluation of
promoter prediction software and identified four high-scoring PPPs.
For these four PPPs we did an in-depth analysis of the predictive
performance, promoter class specificity, overlap between predictors
and positional bias of the predictions.

As future work in promoter prediction, some challenges remain.
The main effort has been done in a number of model organisms, but
there are plenty of other higher eukaryote genomes that will need
promoter identification. In evaluating predictions, we focused on the
association between predictions and TSRs or gene starts. However,
a lot more data is available that may prove useful as evaluation
data, e.g. promoter motifs, DNAhypersensitivity sites and chromatin
structure signatures. In the near future, the importance of promoter
prediction techniques will only increase, as ever more genomes are
sequenced, requiring ever more accurate computational techniques
to extract knowledge from these vast amounts of data.
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