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We have developed a machine learning framework to accurately extract complex genetic interactions from
text. Employing type-specific classifiers, this framework processes research articles to extract various biological
events. Subsequently, the algorithm identifies regulation events that take other events as arguments, allowing a
nested structure of predictions. All predictions are merged into an integrated network, useful for visualization and
for deduction of new biological knowledge.

In this paper, we discuss several design choices for an event-based extraction framework. These detailed studies
help improving on existing systems, which is illustrated by the relative performance gain of 10% of our system
compared to the official results in the recent BioNLP’09 Shared Task. Our framework now achieves state-of-the-art
performance with 37.43 recall, 54.81 precision and 44.48 F-score.

We further present the first study of feature selection for bio-molecular event extraction from text. While
producing more cost-effective models, feature selection can also lead to a better insight into the complexity of the
challenge.

Finally, this paper tries to bridge the gap between theoretical relation extraction from text and experimental
work on bio-molecular interactions by discussing interesting opportunities to employ event-based text mining tools
for real-life tasks such as hypothesis generation, database curation and knowledge discovery.
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1. INTRODUCTION

Text mining tools have become a necessity to keep up with the ever increasing pace of
publications in the field of molecular biology. As they facilitate full integration of knowledge
stored in both structured databases and research articles, text mining algorithms for life
sciences have been widely studied during the last few decades. However, considering state-
of-the-art performance of current tools, it becomes clear that they should still be significantly
improved upon before being sufficiently reliable and applicable on a large scale.

This paper presents a machine learning (ML) framework that accurately extracts various
complex bio-molecular events from text, ranging from binding events and protein catabolism
to gene expression and regulation. Each event is characterized by a trigger, which is a
continuous stream of tokens linked to a certain event type, e.g., “homodimerization” for a
binding event. A trigger word is not restricted to a particular set of part of speech tags, though
verbs and nouns are the most commonly used triggers. Furthermore, a trigger can consist of
multiple consecutive words, e.g., “binding partner.” To define a full bio-molecular event, a
trigger is combined with one or several arguments, which are either simple named entities or
recursively defined new events. Regulation events for example express regulatory pathways
concerning various events, thus allowing for a nested structure of predictions.

Figure 1 shows a representative example of the complexity of this task. While the
protein “HIV-TF1” (T1) is not grammatically dependant on the trigger “binding” (T4), it
is semantically correct to link these words together to create a meaningful binding event.
It is often necessary to scan the whole sentence or even a whole paragraph to find suitable
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FIGURE 1. An example sentence from PubMed article 1653950 of the training corpus. It contains five
events: two (unary) binding events, one phosphorylation, one negative (unary) regulation and one positive
(binary) regulation event.

arguments for certain events. Another interesting example is shown for trigger T7 (“binding”),
for which there is no explicitly expressed argument, resulting in a semantic copy of the protein
“HIV-TF1” (T2).

Our ML framework is designed to process each type of event in parallel using binary
support vector machines (SVMs). All predictions are assembled in an integrated graph,
on which heuristic postprocessing techniques are applied to ensure global consistency
(Section 2).

We have thoroughly investigated the influence of certain design choices for the ML
framework, such as various syntactic parsers, instance definition, choice of kernel for the
SVMs, parameter optimization and new postprocessing methods. Furthermore, this paper
presents the first results of applying feature selection (FS) for this challenge. By gaining new
insights from the training data, our initial system (Van Landeghem et al. 2009) has obtained
a relative rise in performance of 10% on the test set (Section 3).

After presenting the final performance of our system, we explore how theoretical studies
can be turned into practical applications such as hypothesis generation, database curation
and knowledge discovery (Section 4). Finally, Section 5 presents the conclusions of this
work.

2. DESIGN OF A SUPERVISED FRAMEWORK

2.1. Task Setup

The complex bio-molecular interactions extracted by our text mining tool can be classi-
fied into nine broad categories of events. Six event types directly influence proteins (“protein
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events”), of which five always take exactly one argument: localization, gene expression,
transcription, protein catabolism, and phosphorylation. A binding event can have one argu-
ment (e.g., protein–DNA binding), two arguments (e.g., protein–protein interaction) or more
(e.g., complex formation). Furthermore, three regulation event types are defined: regulation,
positive (up-) regulation and negative (down-) regulation, each consisting of a mandatory
theme argument and an optional cause argument. Both argument slots can either consist of
a protein or any other event (Figure 1).

The various event types were selected from the GENIA ontology (Kim, Ohta, and Tsujii
2008) and represent some of the most important events in protein biology, covering protein
metabolism, protein modification, fundamental molecular events and causal relations (Kim
et al. 2009).

Any supervised learning approach heavily relies on high-quality annotated data. For the
task of event extraction, three distinct data sets were provided by the organizers of the recent
BioNLP’09 Shared Task on event extraction: training data (800 articles), development data
(150 articles) and the final test data (260 articles). These data sets all consist of PubMed ab-
stracts extracted from the GENIA corpus (Kim, Ohta, and Tsujii 2008). Stand-off annotation
locating relevant bio-molecular entities such as proteins is provided for all three data sets.
Both training data and development data further include gold standard annotations defining
events as a specific trigger word in text, combined with one or several arguments.

To benchmark the performance of an event-based extraction system, event annotation
on the test data of 260 articles can be produced and evaluated using an online submission
system maintained by the Shared Task organizers. This ensures objective evaluation of the
methods developed. However, in order not to overfit our system to the test set, all analyses
were performed on the development data unless explicitly stated otherwise.

As the prediction of regulation events greatly depends on the ability to predict protein
events, most experiments were only performed for the protein events. Conclusions drawn
from this setup can easily be extended to the entire framework.

2.2. Text Preprocessing

To run an automated extraction algorithm, free text first has to be transformed into
a machine readable format. To this end, data on sentence segmentation and tokenization
has been made available for all articles in the data sets. Furthermore, syntactic analyses
created by various parsers is also provided with the data set: both phrase structure and
dependency representations are available. Phrase structures break a sentence down into
constituents (phrases), which are then broken into even smaller constituents (part of speech
tags). Dependency graphs on the other hand connect individual words by identifying their
grammatical relations. Both formats have been widely used in the field of Natural Language
Processing (NLP) and in BioNLP in particular.

A comparative study between various parsers providing both dependency graphs and
phrase structure parses is shown in Table 1. This study included Dan Bikel’s implementation
of Collins’ parsing model (“Bikel”) and the Charniak–Johnson reranking parser using David
McClosky’s self-trained biomedical parsing model (“McClosky–Charniak”). Analyses of
these parsers were provided for all articles in the data set. In addition to these, we have
employed the freely available Stanford parser (De Marneffe, Maccartney, and Manning
2006). The Stanford parser performs best in our framework, yielding both higher precision
and recall rates in comparison to the McClosky–Charniak parser and the Bikel parser.

Two additional NLP techniques have been used in this study: stemming and blinding of
text fragments. Stemming algorithms map words to their stem, which is the basic concept of
a word (e.g., “homodimerization” is mapped to “homodimer”). Blinding on the other hand
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TABLE 1. Performance of Protein Events for Various Parsers.

Parser Precision Recall F-score

Stanford 66.62 63.44 65.00
McClosky-Charniak 64.99 61.09 62.98
Bikel 60.94 57.87 59.37

completely transforms a word into another word and can be used to facilitate information
retrieval. For example, all annotated proteins in the data set can be blinded with the string
“proteinx,” as the text mining module is not concerned with the exact identity of each protein.
On the contrary, it is easier to learn and recognize a pattern such as “transcription of proteinx”
instead of creating distinct patterns for each possible protein name.

2.3. Global System versus Parallel Processing

A crucial design choice for the extraction algorithm involves its modularity, which either
has a global or a local nature. A global approach implies inferring all plausible events in a
single step, which is highly computationally intensive. A local procedure on the other hand
is characterized by a set of specific classifiers, creating predictions for distinct event types
independently of each other.

We have chosen a local and parallel approach by designing a generic pipeline which
can be employed for each event type. Such a pipeline consists of modules for dictionary
creation, instance definition, feature generation, FS and classification. It can be run for each
event type for which sufficient training material is available. Starting off with the nine broad
categories of events (Section 2.1), we further make a distinction between unary and binary
binding events. Binding events with more than two arguments are not accounted for as only
five positive examples were found in the training set. Similar to binding events, we create
a separate type for unary and binary regulation events, the latter defining events with a
specified cause-argument. This results in a final set of 13 distinct classifiers.

The choice between a global and a local extraction method severely influences the size
of the resulting data sets, limiting options for applicable classifiers. To illustrate, the global
approach of Björne et al. (2009) yields a training set of 31,782 instances and 295,034 unique
features. They state that the linear kernel of their multiclass SVM is the only practical choice
to train the classifier with such large training sets. In contrast, the data sets obtained with
our parallel design vary between 300 instances with 2,000 features (protein catabolism)
and 15,000 instances with 50,000 features (unary positive regulation). This reduced com-
plexity enables us to experiment with binary SVMs and more complex kernels such as
the radial basis function. Performance results of various classifier setups are detailed in
Section 2.7.

Another important advantage of the parallel design lies in the ability to easily add new
event types to the framework without having to recalculate previous work. Any subset of
classifiers can be run independently, resulting in a subset of predicted event types which can
be extended whenever the need arises. This proves to be particularly beneficial when dealing
with specific biological research questions. Life scientists are often focused on a certain set
of research articles dealing with a predefined group of genes involved in only a few specific
event types. Our parallel design greatly expedites the processing of the test set, offering
personalized results to the user in real time.
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Finally, in the parallel design all predictions of different event types can be merged after
classification into an integrated network. Such a network is also compiled from the training
data and then used as a model for the predicted network to locate false positives and prune
the corresponding edges. This process ensures consistency of the predictions made by the
parallel classifiers. More details are described in Section 2.9.

2.4. Trigger Detection

The first module of a pipeline that extracts bio-molecular events from text concerns the
challenge of trigger detection. A trigger is defined by a continuous stream of tokens and is
linked to a certain event type, e.g., “homodimerization” for a unary binding event. In the
training data, triggers are annotated using their text offsets in a stand-off annotation format.

The challenge of trigger detection is tackled using carefully constructed dictionaries.
First, all possible strings are collected by scanning the triggers in the training data and
applying Porter’s stemming algorithm (Porter 1980). In contrast to most other approaches,
our algorithm does allow triggers to span multiple words, as this occurs frequently in the
training data. This initial collection of all possible trigger strings results in entries of limited
use, such as “through” for binding and “are” for localization. Such words lead to many
negative and irrelevant instances as they are too general or too vague. To overcome this
problem, a cleaning step is necessary.

In our original system, the dictionaries were cleaned manually, only keeping specific
triggers for each event type (e.g., “interaction” for binding and “secretion” for localization).
Inspired by the work of Buyko et al. (2009), we now use their proposed formula to calculate the
importance of an event trigger ti for a particular event type T : Imp(t T

i ) = f (t T
i )\∑n

p=0 f (t T
p ),

where f (t T
i ) is the frequency of the event trigger ti of the selected event type T in a training

corpus divided by the total number n of all event triggers of the selected event type T in that
training corpus (i = 0, . . . , n). By applying a cutoff value of 0.005, we only keep those words
that are important enough for that specific event type. In contrast to the work of Buyko et
al. (2009), this measure is not used for event trigger disambiguation as words are allowed
to be included in trigger dictionaries of different event types. This choice was motivated
by analysis of the training data, which has shown that the same word in text may actually
trigger multiple events of different types. The word ‘overexpression’ is a frequently recurring
example, as it is often linked to both a gene expression event as well as a regulation event.

Analyzing the nature of binary regulation events, it became clear that a vast majority
of these events have a protein specified as its causal argument. The dictionaries of binary
regulations were split up accordingly, differentiating between regulation events caused by
proteins and those caused by other events. This automatically keeps the more general words
(e.g., “causes”) out of the dictionaries of events regulated by proteins (e.g., “response”).

Table 2 shows the single most occurring trigger for each protein event type in the training
data.

2.5. Instance Definition

The algorithm that defines instances in a ML framework has a severe influence on the
balance of the data sets and ultimately on the performance of the framework. Careful design
can limit the number of false positives obtained by the classifier, boosting precision of the
predictions.

For the challenge of event extraction, an instance is defined as the combination of a trigger
with one or more plausible arguments. To locate suitable triggers in text, we implemented a
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TABLE 2. Most Frequently Occurring Trigger in the Training Data, for Each Event Type.

Event type Highest ranked trigger Percentage of occurrence

Phosphorylation “phosphoryl” 96%
Protein catabolism “degrad” 76%
Gene expression “express” 68%
Unary binding “bind” 47%
Transcription “transcript” 45%
Localization “secret” 31%
Binary binding “bind” 30%

fast algorithm using Radix trees,1 making use of the constructed dictionaries for each event
type. Candidate arguments were subsequently selected from the same sentence as the trigger,
as analysis on the training data reveals that 95% of all events are expressed within one single
sentence.

By defining instances as any combination of a trigger co-occurring with its candidate
arguments, too many instances end up being irrelevant, especially those originating from long
sentences. This in turn resulted in imbalanced data sets with often less than 5% positives. For
this reason, a negative-instances (NI) filter was implemented that applies some simple yet
efficient heuristics to reduce the dimensionality of the data sets, relying on both dependency
parsers and length of the subsentence spanning the candidate event.

As described in Section 2.2, the Stanford parser was selected to create dependency graphs
for each input sentence. A minimal sub-graph is then extracted for each instance, spanning
its trigger and all arguments. Figure 2 shows the dependency parse of a sentence containing
several bio-molecular events. As an example, the subgraph of the phosphorylation event
spans nodes 17 and 19, while the positive regulation event triggered by “essential” spans the
subgraph consisting of nodes 17, 19, 21, 23, and 24.

The NI filter enforces a cutoff on the size of the dependency subgraph, as positive
instances are known to be expressed in smaller sub-graphs than negative examples. Figure 3
shows that the subgraphs of positive binary binding instances are never larger than 10 edges,
while negative instances may contain up to 18 edges. Only keeping instances with subgraphs
smaller than 8 edges will successfully discard 35% irrelevant negatives, while keeping 92%
of the positive instances.

Similarly, the length of the sub-sentence spanned by a candidate event is used as a second
parameter of the NI filter. Setting the threshold at 175 characters for binary binding events
includes 99% of the positive examples, while removing about 20% irrelevant negatives.

The NI filter thus reduces the size and skewness of the data sets, resulting in faster
classification pipelines. Furthermore, by identifying a large portion of negative instances
even before they are processed by the classifier, a gain of 2.1 points in F-score is obtained for
protein events on the development set compared to a setup which does not use the NI filter.

For regulation events, the NI filter becomes a true necessity as considering all candidate
argument sets from each sentence leads to data sets of tremendously high complexity. For
example, the filter reduces the number of negative unary positive regulation events from
39.419 to 13.995, improving the percentage of positives from 4% to 10%, while reducing
the feature set from 127.098 to 49.384.

1 Java implementation by Tahseen Ur Rehman, http://code.google.com/p/radixtree/
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FIGURE 2. Example of a dependency graph for the sentence “Interestingly, treatment of purified HIV-TF1 by
phosphatase greatly reduced its DNA-binding activity, suggesting that phosphorylation of HIV-TF1 was essential
for DNA binding,” retrieved from PubMed article 1653950. Each word and punctuation mark in the original
sentence is numbered, and these numbers are used as unique labels for the nodes.

For training purposes, even positive instances exceeding the NI filter cutoff are taken
into consideration as they add important information to the data set. To boost the number of
positives even further, the system was extended with a module that processes “Equivalence”
information. This type of annotation is included with the data sets and marks synonyms and
acronyms referring to the same biological entity. For example, in the sentence “The c-Rel
homodimer has a high affinity for interleukin-6 (IL-6),” interleukin-6 and IL-6 are annotated
as equivalent entities. In the gold standard event annotation, only c-Rel and IL-6 are annotated
as binding partners. We thus implemented a function which recognizes the binding event of
c-Rel and interleukin-6 as a second event, and which recursively applies this methodology
to create new regulation events when one of the two equivalent events occur as arguments
for other events. The final distributions of positive and negative examples of protein events
in the training data range between 7% and 51% (Table 3).

2.6. Feature Generation

Our feature generation module is based on previous work on extracting protein-protein
interactions (PPIs) from text (Van Landeghem et al. 2008). PPIs were considered to be binary
and there was no specification of trigger words. Only one path in the dependency graph was
analyzed for each instance: the shortest path between the two candidate binding partners.
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FIGURE 3. Distribution of binary binding instances in the training data.

TABLE 3. Final Distribution of Instances for Protein Events in the Training Data.

Event type # neg. inst. # pos. inst. % pos. inst.

Phosphorylation 156 163 51.1
Protein catabolism 162 109 40.2
Gene expression 5,328 1,722 24.4
Unary binding 3,512 580 14.2
Binary binding 2,169 222 9.3
Transcription 7,196 562 7.2
Localization 3,561 269 7.0

However, this work deals with much larger and more complex sub-graphs, thus requiring
a different set of features to fully capture the semantics of each instance. As we are now
dealing with graphs instead of trees, we have to exclude “edge walks,” i.e., patterns of two
consecutive edges and their common vertex (e.g., “nsubj VBZ prep”). Vertex walks are now
the main source of information derived from the dependency graph, consisting of two vertices
and their connecting edge (e.g., “essential nsubj phosphorylation”). For these patterns, both
lexical as well as syntactic information is considered. For the lexical variant, protein names
and triggers were blinded to extract more general patterns. The same principle is applied with
theme and cause arguments for regulation events. To illustrate using Figure 2, we blind the
nodes 17 and 19 as “causex” and nodes 23 and 24 as “themex” when processing the positive
regulation event triggered by the word “essential,” blinded as “triggerx.” Resulting features
for the vertex walks would then include “triggerx nsubj causex” and “triggerx prep_for
themex.”
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Blinding avoids overfitting of the classifier and simplifies the feature set. However, in
order not to lose valuable information, we include a few other features that can be used to
reconstruct the original instance when necessary. Lexical and syntactic information about
the trigger are stored in separate features. Similarly, additional features are included for
regulation events, storing whether the arguments are proteins or events, and specifying the
exact event type.

In addition to these features, we augment each feature vector with lexical information.
First of all, a bag-of-words (BOW) approach is applied to all vertices in the subgraph. This
automatically excludes uninformative words such as prepositions, as they do not appear
as individual nodes on the graph. Furthermore, we added trigrams derived from the whole
sentence. These are three stemmed consecutive words from the subsentence spanning the
event. As an example, the words “by inducing transcription” lead to the stemmed trigram
“by induc transcript.”

The size of the subgraph and the length of the subsentence are also included in the
feature vector. Even though they are used in the previous step as parameters for the NI filter,
these two parameters are still relevant for classification. Indeed, instances that only just pass
the filter still have a higher chance of being negative.

2.7. Classification

Our framework needs a classifier able to deal with thousands of instances, thousands of
features, and a class imbalance of up to 93% negative instances. To this end, we used the
LibSVM implementation provided by WEKA,2 which is a state-of-the-art binary classifier.
Analyses were conducted experimenting with both the linear kernel and the radial basis
function (RBF), and various strategies for parameter tuning were implemented.

The linear kernel requires tuning of the parameter c, which was implemented with an
internal 5-fold cross-validation (CV) loop performing a grid search on the training portion
of the data. Values between 2−5 and 214 were tested, and the one producing the best F-score
was automatically selected for each data set.

However, a more complex problem arises when both the parameters γ and c of the
RBF kernel have to be tuned simultaneously. A combined search strategy has been tested
extensively, using both a grid search and a more advanced pattern search. A pattern search is a
parameter optimization algorithm that starts at the center of the search range and subsequently
explores small steps in each direction for each parameter (Lewis and Torczon 1999). If the
fit of the model improves, the search center moves to the new point and the algorithm is
repeated. If no improvement is found, the step size is reduced and the search executed again.
The pattern search stops when the search step size is reduced to a specified minimum value.

Instead of starting at the center however, the combined strategy first employs a grid
search to determine rough values for γ and c. These values are then fine-tuned by the pattern
search. This strategy should avoid ending up in a local optimum, while at the same time
being less computational expensive than a true grid search.

Despite careful design of the tuning algorithm, performance drops significantly when
using the RBF kernels tuned for both parameters (Table 4). However, comparing this classifier
to one that only has been tuned for the c-parameter, about equal performance is reached within
the internal CV loop. The most plausible explanation for the final drop in performance thus
seems to be that the complex search strategy severely overfits the parameters on the training
portion of the data. Eventually, we therefore decided to leave γ at its default value.

2 Available at http://www.cs.waikato.ac.nz/ml/weka/
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TABLE 4. Performance of Protein Events for Various Classification Settings.

Kernel Parameters Precision Recall F-score

RBF tune c 66.62 63.44 65.00
RBF tune c and γ 30.00 28.75 29.36
Linear tune c 64.58 61.34 62.92

TABLE 5. Performance of Protein Events for Different Feature Sets, Tested with the RBF Kernel.

FS Features Precision Recall F-score

Manual All 66.62 63.44 65.00
Manual All except BOW 61.34 64.07 62.68
Manual All except trigrams 62.21 65.15 63.64
Gain ratio 90% 69.71 61.71 65.46
Gain ratio 75% 69.08 61.59 65.12
Gain ratio 50% 68.58 60.97 64.55
Gain ratio 25% 67.13 60.10 63.42

Even though the linear kernel runs faster, it performs slightly worse than the RBF kernel,
with a drop in performance of about 2 points F-score. Consequently, the RBF kernel was
chosen for all other analyses.

Finally, we tested the influence of assigning higher weights to positive training instances,
to try and correct for the imbalanced nature of the data, but this had almost no effect on
overall classification performance.

2.8. Feature Selection

The rich feature representation of the framework results in high-dimensional feature sets
and the question arises whether all these features are absolutely necessary for the classification
task. In particular, one could worry about the amount of noise caused by lexical features
from random words in the same sentence, i.e., the BOW and trigram features. To assess their
influence on performance, new experiments have been conducted, each time excluding one
specific type of feature (Table 5, first three rows). Clearly, all types of features in our rich
feature set contribute to the global performance, as there is a drop in F-score of 2.32 and
1.34 when leaving out BOW or trigram features respectively.

However, there is still a considerable number of irrelevent features creating noise for the
classifier. To account for this with a more systematic approach, we applied fully automated
FS. FS techniques aim at identifying a subset of the most relevant features from a large initial
set of features (Guyon and Elisseeff 2003). In contrast to other dimensionality reduction
techniques such as methods based on projection, FS techniques preserve the semantics of the
features and thus create the opportunity to gain a deeper insight into the specific properties
of the most important ones.

Depending on the interaction with the model, three classes of FS techniques can be
defined (Saeys, Inza, and Larranaga 2007). In this work, we focus on the class of filter
methods, which perform FS by looking only at the intrinsic properties of the data, thus being
independent of the classification model used afterwards. The filter method used in this work
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is based on the information-theoretic concept of gain ratio. Previously, this method has been
succesfully applied to produce faster and more cost-effective models for the extraction of
PPIs from text (Van Landeghem et al. 2008).

Regarding a given set of training patterns S as a distribution over the class labels, its
entropy can be calculated as

H (S) = −
s∑

i=1

p(ci ) log2 p(ci )

with p(ci ) denoting the proportion of patterns in S belonging to class ci . The information
gain IG(S, D) then represents the expected reduction in entropy (uncertainty) when splitting
on a feature D, and is calculated as

I G(S, D) = H (S) − H (S|D)

= H (S) −
∑

j∈V (D)

|Sj |
|S| H (Sj )

where V (D) denotes the possible values for feature D and Sj is the subset of S for which
feature D has value j.

Adjusting the bias towards features with a larger number of possible values, the infor-
mation gain is scaled by the entropy of S with respect to the values of feature D. This finally
results in the gain ratio GR(S, D):

G R(S, D) = I G(S, D)

−
∑

j∈V (D)

|Sj |
|S| log2

|Sj |
|S|

All features can now be ranked from most to least influential by sorting their gain ratios
(Hall and Smith 1998). The top k features are then used to construct a simplified classifier.
In this paper, this cutoff is defined as a percentage of the size of the original feature space.
Analyses for the framework of event extraction confirm results of our previous PPI study:
up to 50% of all features can be removed without losing more than 1 point of F-score, while
at the same time creating faster classification models (Table 5, last four rows).

The explicit ranking of the gain ratio algorithm was statistically analysed to determine
the type of features occurring more frequently at the top. Figure 4 shows the results for the
top 30% of the gain ratio ranking. For each main type of feature, a curve represents
the percentage of values occurring in the top. A random baseline method would resem-
ble the identity function, shown with a thick black line. The chart, however, shows that
syntactic features are overrepresented in the top ranking. Furthermore, lexical information
about triggers and vertex walks are in general less significant than their syntactic counter-
parts, though they are usually bigger in number. This could explain the initial peak of lexical
triggers and BOW features: only a small percentage of these features are truly relevant.

2.9. Postprocessing

LibSVM produces numeric values between 0 and 1 for each instance in the testing set,
but a postprocessing step is necessary to obtain the final set of predictions. In our initial
system, we determined cutoff values on the LibSVM scores by evaluating the classifiers on
the development data. However, this methodology had a serious drawback: new cutoff values
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FIGURE 4. Analysis of top-ranked features.

had to be defined whenever a new classifier was trained or when other parameters had been
changed in the system.

We now approach the problem of selecting the right predictions from a different angle,
ensuring global consistency of the final set of predictions rather than making local decisions.
As a first step, all instances from the testing set are collected and merged into an integrated
network with weighted edges according to their LibSVM scores. Global consistency of the
network is then imposed by using a model obtained from the training data. As instances are
created in the same way for both training and testing data sets, the percentage of positives
in the training set provides a reasonable estimate for the number of positives in the testing
set. Furthermore, this measure is independent of the classifier. By keeping the top ranked
predictions until a certain percentage of positives is reached, we gain 1.6 points F-score for
protein events on the development data.

This method creates an additional advantage, allowing for the development set to be
used as training data, as the cutoff values are now obtained from the training data only. The
classifiers can thus be trained on the merged articles from both training and development
data, extending the training set from 800 articles to 950. We have used this setup only to
produce the final results on the final test set.

Our original system included a module to check overlapping triggers of different event
types. Following our intuition, we assumed that one word should never lead to two triggers
of distinct event types at the same time. However, after running a detailed analysis on the
training data, we decided to reject this hypothesis. For example, the word “overexpression”
can simultaneously lead to both a gene expression and a regulation event. Consequently, this
postprocessing module has been discarded. While most other systems disambiguate the type
of a trigger in an early stage of the pipeline, our parallel approach can easily avoid this issue
and thus model the data more truthfully.
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To fine-tune the model and ensure global consistency of the predictions even further,
more detailed information can be extracted from the training data. For example, we notice
that the training data does not contain any examples where two regulation events contain
the same arguments, one being the cause in the first event, and the theme in the other.
Consequently, when this does happen in the test data, we select the one with the highest
SVM score.

3. RESULTS

3.1. System Improvement

Our official result for the Shared Task reports a global performance of 40.54 F-score
on the test data, achieving 5th place out of 24 participants. In the previous sections, we
have described extensions and fine-tuning of our ML system. To summarize, the following
changes were made compared to the original system: first of all, the dictionaries are now
compiled by calculating the importance of each trigger for a particular event, instead of
using manual filtering. The system can now also process overlapping triggers of different
event types, as this initial limitation was artificial and in contradiction with the training data.
Regarding instance creation, the new system utilizes “Equivalence” information to create
more positive examples. Furthermore, a module for FS was incorporated and is currently
set to high-precision removal of 10% of irrelevant features. Finally, when all predictions are
assembled, we now estimate the percentage of positives in the testing set by a model derived
from the training set instead of using an arbitrary cutoff value. Our new and improved system
achieves 37.43 recall, 54.81 precision, and 44.48 F-score.

During development, only a few experiments were run on the final test set, in order not to
overfit the classifiers to the test data. All other analyses were performed on the development
data set. Remarkably enough, a higher relative gain in performance was obtained on the
final test data (10%) than on the development data (5%). This indicates that the original
system could have been slightly overfitted to the development data, whereas the improved
system is more general and can better cope with new data. It could also be due to using the
development data as training data for the final predictions on the test set, resulting in a larger
training corpus and more accurate classifiers.

3.2. Learning Curve

To assess the influence of the size of the training data on the final performance, the
training data was divided into 8 portions of 100 articles. The first classifier was trained using
one portion only. By incrementally adding 100 articles to train the next classifier, prediction
performance started rising (Figure 5).

Two versions of this experiment were conducted, experimenting with different dictionar-
ies for the extraction of triggers. The first one was run with dictionaries constructed from all
800 training articles (“complete dictionaries”). For the second version however, the dictionar-
ies were only based on the data available in the smaller portion of the training data (“smaller
dictionaries”). The discrepancy between these two versions clearly shows the added value of
having better curated dictionaries. As both curves do not indicate a level of saturation quite
yet, we hypothesize that supervised learning systems might benefit from even more training
data. This has motivated us to include the development data as training for the final system,
which is benchmarked on the final test data. Consequently, the dictionaries were also based
on this extended training set of 950 articles.
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FIGURE 5. Learning curve of protein events, benchmarked on the development data.

TABLE 6. Maximal Recall for the Development Data.

Event type Maximal recall

Protein catabolism 100.00%
Phosphorylation 95.74%
Gene expression 92.13%
Transcription 91.46%
Localization 88.68%
Binding 79.03%
Regulation 46.15%
Negative regulation 42.86%
Positive regulation 40.36%

Obviously, numbers reported in this paper for benchmarking on the development data
were obtained by classifiers trained on the original 800 articles only.

3.3. Maximal Recall

To evaluate maximal recall of our instance extraction method, an evaluation using an all-
true classifier was performed, which roughly corresponds to a naive baseline co-occurrence
method. Table 6 clearly shows that maximal recall is quite high for almost all protein
events; only binding and localization events achieve less than 90% recall. In general we
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TABLE 7. Final Performance on the Test Data, Detailed for Each Event Type.

Event type R P F

Phosphorylation 77.04 70.27 73.50
Gene expression 62.74 82.21 71.17
Protein catabolism 64.29 50.00 65.25
Localization 43.10 80.65 56.18
Transcription 57.66 53.02 55.24
Binding 33.43 42.03 37.24
Total protein events 54.68 67.69 60.49
Negative regulation 22.43 46.20 30.20
Positive regulation 22.99 37.79 28.59
Regulation 15.12 28.21 19.69
Total regulation events 21.48 37.85 27.40
Global total 37.43 54.81 44.48

can conclude that our instance definition module and the NI filter perform well for protein
events.

In contrast, recall of the regulation events is never above 50%. This is partly due to
missing protein events, but could also be caused by the restriction of only extracting events
within one sentence. In future work, we hope to overcome this limitation by incorporating
anaphora resolution.

3.4. Detailed Performance Analysis

Details of the final performance for each event type are listed in Table 7. Not suprisingly,
the three types of protein events performing best in our ML framework, correspond to the
data sets with the highest percentage of positive examples: phosphorylation, gene expression
and protein catabolism. Furthermore, we found that each of these three types is linked to
a possible trigger that accounts for more than 65% of the training examples (Table 2). In
contrast, binding events are much more difficult to identify as they are expressed with a
broad spectrum of possible triggers. This is also illustrated by the maximal recall study, as
new triggers can not be identified in the test set if they have not occurred in the training data.

For regulation events, an F-score of 27.40 is obtained on the test data, which is signifi-
cantly lower than the performance of protein events (60.49). This discrepancy is due to the
inherent complexity of regulation events making them more difficult to extract.

4. DISCUSSIONS

4.1. Evolution of BioNLP

BioNLP emerged from the combined expertise of molecular biology and computa-
tional linguistics. At first, the community was mainly focused on named entity recognition
(NER) and simple binary relation extraction, such as protein-protein interactions (Plake,
Hakenberg, and Leser 2005; Giuliano, Lavelli, and Romano 2006; Fundel, Küffner, and
Zimmer 2007; Saetre, Sagae, and Tsujii 2008). Two recent community-wide challenges,
Biocreative (Hirschman et al. 2005; Krallinger et al. 2008) and the BioNLP’09 Shared Task,
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have shown their merits by providing common benchmarking data and a framework for
meaningful comparison between various systems.

The Biocreative tasks consist of mainly monolithic challenges and require implemen-
tation of a complete pipeline, including named entity recognition, relation extraction and
gene normalization. In contrast, the BioNLP’09 Shared Task focuses on the subtask of rela-
tion extraction only, considering more complex interactions than ever before. The resulting
predictions can model the true interaction graph more accurately.

Lessons learned, from both challenges attribute to the goal of bringing NLP research
closer to its practical application in the biological sciences. In this section we describe a few
opportunities to use an event-extraction framework in such practical applications.

4.2. Curation of Structured Databases

Event-based extraction algorithms can form a useful contribution to the development
of detailed and structured databases. However, gene normalization is a crucial step to link
text mining results to structured database entries. Mapping gene symbols to their unique
identifiers allows for full integration between various resources, but it remains a nontrivial
task considering the high degree of ambiguity in gene nomenclature. A recent study of
Wermter, Tomanek, and Hahn (2009) obtains a competitive F-score of 86.4 on the Biocreative
II test set.

Once the named entities are uniquely identified, extracted relations can be mapped to
database facts using ontologies. All event types used in the Shared Task have been selected
from the Genia ontology, and can be mapped onto the Gene Ontology (GO). GO is a
commonly used resource consisting of three fine-grained ontologies, covering molecular
functions, cellular components and biological processes (The Gene Ontology Consortium
2008). Mapping event types to GO terms enables integratation of text mining predictions
with the database of Gene Ontology Annotation (GOA).

Going one step further, negation information extracted from text might be used to locate
inconsistencies between research articles and database facts, while speculation information
could influence the confidence score of such database records. The official Shared Task
included a subtask about the recognition of negation and speculation, for which promising
results were obtained (Kilicoglu and Bergler 2009; Van Landeghem et al. 2009).

4.3. Precision vs. Recall

In most retrieval systems, an inverse relationship exists between recall and precision. An
important advantage of a ML framework lies in its ability to be tuned to achieve either good
precision or good recall. The nature of an application often prefers one of the two.

As observed by Cohen et al. (2009), high precision and low recall systems can be
compensated by the amount of redundancy across the literature. Well-known and studied
interactions will thus eventually be picked up by the method as more articles are being
processed. It could be interesting to employ such a system to provide reliable textual evidence
for claims made in structured databases, using an integrative approach as described in
Section 4.2.

On the other hand, biological experimentalists might especially be interested in low-
confidence predictions as these may represent interesting hypotheses for new studies. Humans
are particularly good at selecting the right information from a collection of noisy predictions,
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FIGURE 6. Precision-recall curve for predicting all events: dots indicate the total performance when varying
the LibSVM thresholds. Plotted lines each mark a constant F-score level.

as illustrated daily by the success of Google,3 a search engine that often produces thousands
of informative hits of which only a few are truly relevant to the user.

To accommodate for specific needs regarding either high precision or high recall, the
parameters of the postprocessing module can easily be tuned to create a new set of predictions
accordingly. Instead of selecting about the same percentage of positives as found in the
training data, this number can either be reduced or increased, trading off recall for precision.
To illustrate, a precision-recall curve was compiled for the prediction of all events in the
development data (Figure 6). The highest F-score (48.62) is achieved at 55.67 precision and
43.15 recall, and corresponds to an exact mapping of percentages between the training and
testing set (Table 3). If we only select the top 40% of those original predictions, we achieve a
precision of 74.90, recall of 21.24 and F-score of 33.10. The highest possible precision rate
is 79.17, but performance then significantly drops to 9.42 F-score.

As benchmarking on the final test set is limited, a similar graph for the final system
trained on 950 articles was not produced, but we expect the results to be similar. We did run
one additional experiment on the final test data using the 40% factor and achieved 73.77
precision, 17.85 recall and 28.74 F-score. These numbers outperform the system of manually
written rules that achieved the highest precision among all participants in the official Shared
Task with 71.81 precision, 13.45 recall and 22.66 F-score (Cohen et al. 2009). These results
show that a ML framework can compete with a rule-based method even when high precision
is required.

3 Google Inc, http://www.google.com/
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FIGURE 7. Visualization of a sub-graph of the integrated network. Colors display different types of inter-
actions: black for binding and unspecified regulation events, orange for phosphorylation, blue for transcription,
and green/red for positive/negative regulation events.

4.4. Knowledge Discovery

As explained in Section 2.9, predictions from the parallel pipelines are merged into an
integrated graph. Subsequently, postprocessing techniques are applied to prune the graph
and ensure consistency of the predictions. Figure 7 shows a subgraph of the final network.
Edge thickness corresponds to the prediction confidence of the interaction as provided by
the LibSVM classifiers, and colors display different types of interactions. This graph-based
visualization enables intuitive inference of new biological knowledge or hypotheses. The
network depicted in Figure 7 shows an example: the positive regulation of GM-CSF by Tax,
which is in turn negatively regulated by Tax UNRC, suggests an indirect negative regulation
of GM-CSF by Tax UNRC.

Instead of inferring such hypotheses manually, the data can be converted to a machine-
readable data format such as RDF or OWL.4 Automated reasoning systems could then
provide valuable new predictions. These could be either false negatives which were missed
by the classifier, or negatives that were not present in the literature and thus represent new
hypotheses.

4 Details of W3C standards such as RDF or OWL can be found at http://www.w3.org/
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5. CONCLUSIONS

We have developed a ML system that extracts bio-molecular events from research articles
with high precision. In this study we have discussed and benchmarked several important
design choices for such a framework, ranging from various text pre-processing methods
and parameter optimization to the modularity of the system and size of the training data.
Both learning curves as well as precision-recall curves have shown interesting characteristics
related to the challenge of event extraction.

Furthermore, we have presented the first application of FS to bio-molecular event extrac-
tion from text, obtaining faster and more cost-effective models. Analysis of the top ranked
features has shown that while lexical features are important, a huge percentage of them are
irrelevant and mainly add noise to the classifier. Syntactic features on the other hand are in
general highly useful.

We are confident that insights learned during our experiments can lead to substantial
improvements in this field. For example, we have been able to obtain a relative performance
gain of 10% compared to the first version of our framework, benchmarked on the BioNLP’09
Shared Task on event extraction. Our system now achieves 37.43% recall, 54.81% precision,
and 44.48% F-score.

Twenty-four international teams participated in the official BioNLP’09 Shared Task,
resulting in 24 distinct extraction systems. Our analysis of various design choices is not only
highly relevant for various ML approaches, but can also offer a meaningful contribution to
the development of rule-based systems. The results of our FS experiments are particularly
useful for this purpose. For future work, we plan on employing a variety of FS algorithms
and analyse the resulting feature ranking lists.

Finally, this paper has attempted to bridge the gap between theoretical relation extraction
and real-life applications such as database curation and knowledge discovery. We illustrated
the possibility of merging all predictions into an integrated network. This is interesting not
only for visualization, but can also be used to infer new biological hypotheses to be tested
in the wet labs. This creates the opportunity to discover meaningful relations through the
cooperation of fully automated, supervised learning techniques on one hand, and an expert
user able to interpret its results on the other hand. We plan on investigating these opportunities
in more detail in the future.
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