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“Module networks” are a framework to learn gene regulatory networks from expression
data using a probabilistic model in which coregulated genes share the same parameters
and conditional distributions. We present a method to infer ensembles of such networks
and an averaging procedure to extract the statistically most significant modules and
their regulators. We show that the inferred probabilistic models extend beyond the
dataset used to learn the models.
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Introduction

Methods for reverse engineering transcrip-
tion regulatory networks from high-throughput
microarray data come in many different fla-
vors.1–5 An important class of methods are
those that not only seek to identify the topolog-
ical wiring of the network,6–8 but also attempt
to infer a model of the biological system that
explains the observed gene expression patterns
and generates testable hypotheses. Such mod-
els can take the form of probabilistic graphical
models,1,9,10 simplified kinetic equation mod-
els,11 or biophysical models.5 A common prop-
erty of all modeling approaches is that the
number of parameters is much larger than
the number of experimental data points avail-
able to define them. Dimensionality reduc-
tion is usually achieved by a coarse-graining
step, which collapses individual genes into clus-
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ters of coexpressed genes or modules, where
all genes in a cluster share the same model
parameters.12

This conceptual simplification has as a draw-
back that inferred interactions are influenced
by the module quality. Moreover, it is hard
to translate the concept of a biological mod-
ule in a strict mathematical definition. When
searching for modules, often many local op-
tima exist with partially overlapping modules
differing from each other in a few genes or con-
ditions. Therefore, in our approach we exploit
the “fuzzy” property of a module to increase the
reliability of the predicted interactions. Instead
of reporting only one cluster solution (local op-
timum), we use a stochastic approach to gener-
ate many partially redundant cluster solutions
(bootstrapping) and generate an ensemble so-
lution by averaging over multiple high-scoring
models.

Crucial for the success of the ensemble ap-
proach is the availability of an efficient method
for sampling a large number of different mod-
els covering the whole search space of possible
models.13 Therefore, we use the deterministic
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approach of Michoel and colleagues14 as a basis
for our sampling method. In this approach gene
and condition clustering are decoupled from
learning the regulatory programs compared to
the original method of Segal and coworkers,9

which optimizes both simultaneously. This al-
lows for a higher efficiency while maintaining
an equal performance rate.14 Several exten-
sions of the method of Segal and coworkers9

infer transcriptional modules from gene expres-
sion and genome-wide location analysis.15–18 It
is entirely feasible to develop ensemble strate-
gies for these methods as we did for Segal and
coworkers.9 This constitutes an interesting line
of future research. In this paper we give a brief
description of the algorithm and highlight some
results for an expression compendium for Es-

cherichia coli.8 A complete analysis of this dataset
and comparison of our approach to the mu-
tual information based CLR method8 is given
in Michoel and colleagues.19 A detailed com-
parison between the ensemble approach and
the direct-optimization based method of Segal
and coworkers9 on Saccharomyces cerevisiae data is
given in Joshi and colleagues.20

Results and Discussion

The Algorithm

The algorithm takes as input a gene-
expression dataset and a list of candidate reg-
ulators. It gives as output a large number of
probabilistic models consisting of a set of gene
clusters, with—for each gene cluster—a parti-
tion of the experiments and a probabilistic reg-
ulatory program explaining the observed ex-
periment partitions in terms of the expression
of a small number of regulators. The number
of gene and experiment clusters is determined
automatically and can vary from one solution
to the next. Using overrepresentation in the en-
semble, the most probable interactions can be
identified. The regulatory programs can be val-
idated on new experimental data and generate
testable hypotheses about conditional regula-
tion of the inferred gene clusters.

The first step of the algorithm consists of gen-
erating an ensemble of gene clusters with ex-
periment partitions. A Gibbs sampling method
iteratively updates the assignment of each gene
given the current gene and experiment clus-
ters, and the assignment of each experiment in
each gene cluster given the current assignment
of all other experiments in that gene cluster,
iterating until a stationary state is reached. De-
tails about the Gibbs sampler algorithm and a
complete analysis of its convergence properties
can be found in Joshi and colleagues.21 Briefly,
in a single run, the Gibbs sampler reaches a
local optimum in the direction of genes, but
covers the whole search space in the direction
of experiments. This implies that for a given
cluster of co-expressed genes there are multiple
equiprobable ways of partitioning the experi-
ments. To also sample from the whole search
space in the direction of genes, we perform
several independent Gibbs sampler runs with
random restarts. In Joshi and colleagues,21 it is
shown that each of the local optima in the di-
rection of genes is (approximately) of the same
height, and therefore equally important, and
that a relatively small number of local optima
is sufficient to cover the whole search space.
(Typically two distinct sets of 10 local optima
for a dataset of 1,000 genes agree for 95% on
the probability for each pair of genes to be
clustered together, see Ref. 21 for details.) A
graphical cartoon representation of the Gibbs
sampling procedure is given in Figure 1.

In the second step of the algorithm, regula-
tory programs are learned for each experiment
partition for each gene cluster. This is achieved
by linking the sets in the experiment partition
hierarchically in a decision tree. For each split in
this tree, a candidate regulator is found whose
expression is significantly different on both sides
of the split, as measured by an entropy measure.
Details can be found in Ref. 14.

A gene cluster with a regulatory program is
called a transcriptional module, and a partition of
all genes into clusters, each with a regulatory
program, a module network. A sample module is
shown in Figure 2. To each module network
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FIGURE 1. Graphical cartoon representation of the Gibbs sampling procedure for two-
way clustering of genes and conditions.21 Each colored curve represents a random restart
converging on a distinct local optimum in the direction of genes. In the direction of experi-
ments, the whole search space can be covered in one run.

FIGURE 2. Example module with a regulatory program. The numbers under the experi-
ment clusters are the standard deviations and mean expression values of the data in the cluster.
The numbers under each tree node are the normalized Bayesian scores gained in the Gibbs
sampler by making this data split21 and a percentage quality score for the assignment of this
regulator.14 The colored bars on each tree node are the expression levels of the regulators
with experiments sorted in the same order as in the experiment clusters.
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FIGURE 3. Sample interactions discussed in the text. Blue edges are present in RegulonDB, green edges
connect to genes not in RegulonDB, and dashed edges are new predictions validated by literature.

corresponds a probabilistic model defined by
a probability density function p (x 1, . . . , xN )
with xi the continuous valued expression level
of gene i (see Methods). The value of p (x 1, . . . ,
xN ) measures how well the model explains a
particular experiment with expression levels for
all genes.

Ensemble Averaging

We have applied the algorithm on a com-
pendium of Affymetrix microarrays for E. coli.8

The compendium contains 445 expression pro-
files for 4,345 genes under 189 different stress
conditions and genetic perturbations. The re-
sults are validated by comparison with exist-
ing knowledge of transcriptional interactions in
RegulonDB22 and EcoCyc.23 A complete anal-
ysis of the inferred module networks and their
biological significance is beyond the scope of
this paper and will be given elsewhere.19 Here
we highlight a few examples of inferred inter-
actions that are representative for the work-

ing mechanism of the ensemble approach (see
Figure 3).

A first example is given by the gatYZABCD

operon (involved in galactitol metabolism). As
expected, the genes in this operon consistently
cluster together. GatR_2, a subunit of the
GatR transcriptional repressor, is consistently
assigned as a candidate regulator. It is known
that GatR negatively controls transcription ini-
tiation of the gatYZABCD operon, which is the
only known target of GatR according to Reg-
ulonDB. The many local optima, generated by
the Gibbs sampling approach resulted in 81
additional genes, which were clustered at least
once with one of the gatYZABCD genes. Except
for one potential new target treC, which was
found repeatedly in combination with gatC and
gatD, the interactions between the remaining 80
genes and GatR were not sufficiently significant
to be retained in the final solution. This illus-
trates how the ensemble approach guarantees
an effective filtering of false positives while re-
taining the true positives. This example also
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illustrates how combinatorial regulation can be
detected. For gatY, gatZ, gatA, and gatB, a second
regulator, YeaT (a predicted regulator involved
in malate metabolism), with an anticorrelated
expression pattern seemed to play a role in a
subset of the conditions (see Fig. 2).

Four interactions could be inferred for GadX
(a transcriptional activator involved in acid re-
sistance): GadX itself, which makes sense as it
is known to be autoregulated,24 and three novel
targets slp, gadW, and yhiD. This finding is sup-
ported by literature, as the expression of both
slp25 and yhiD25 seemed to be affected in a gadX

mutant, while gadX and gadW seem to tightly
control each other’s expression.26

For Lrp (a regulator involved in the high-
affinity transport of branched-chain amino
acids and a mediator of the leucine response),
44 interactions could be found, of which
five could be confirmed by RegulonDB (ilvI ,
ilvH , livG, livM, and livN ) and 39 were new.
Among the predicted interactions with Lrp
we found the leuLABCD genes. According to
literature, the Lrp-dependent regulation of the
leuLABCD operon is only indirect.27 However,
without additional data, no distinction can be
made between direct and indirect effects of a
regulator if both give rise to a correlated expres-
sion level with the targets. Four of our predicted
targets (purM , argA, yhjE, and aroP ) were tested
by ChIP analysis,8 and three (purM , argA, and
yhjE) were confirmed. YhjE was also found to be
differentially expressed in a microarray analy-
sis of lrp mutants.28 For the remaining genes,
no clear indication for their regulation by Lrp
could be found. However, it should be noted
that Lrp not only acts as a regulator, binding
specific DNA sequences, but also functions as a
DNA-organizing protein, extending its global
role in regulation.29,30 A large regulon of Lrp,
as was detected by our method, thus is in line
with this more global role of Lrp.

Model Evaluation

One of the purposes of model-based reverse-
engineering methods is to infer a model of the

system that extends beyond the dataset used to
learn the model. As such these methods can
form the basis for developing methods that use
new data to refine and extend a partially vali-
dated model, rather than inferring a completely
new network model each time a dataset is up-
dated. Validation of a model is done by com-
paring the distribution of 1

N
log p(x1, . . . , xN )

(see Methods) for new data with the distribu-
tion for data used to learn the model. In gen-
eral, higher values of log p mean better expla-
nation of the data by the model. The results
of this comparison of 75 experiments recently
added to the M3D database8 with the 189 origi-
nal experiments, for 100 module network mod-
els selected at random from the ensemble, are
shown in Figure 4. The overlap between the
distributions shows that the probabilistic mod-
els indeed generalize to unseen data. For com-
parison we also perform a randomization test
by permuting the gene indices of the data ma-
trix. As expected, the evaluation of the mod-
els on randomized data is several orders of
magnitude smaller than on real data, and in
fact around 15% of the randomized experi-
ments have a value log p = − ∞, that is, zero
likelihood.

Methods

Datasets

We downloaded a compendium of expres-
sion profiles for E. coli8 and a list of 328 can-
didate regulators from http://gardnerlab.bu.
edu/netinfer_plos_2007/. We averaged over
replicate experiments to obtain a data matrix of
4,345 genes and 189 experiments. Additional
data for 4,292 genes and 75 experiments for val-
idation of the probabilistic models were down-
loaded from http://m3d.bu.edu/norm/.

Probabilistic Model Evaluation

The probabilistic model introduced by Segal
and coworkers9 associates to each gene i a con-
tinuous valued random variable Xi measuring
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FIGURE 4. Histogram of 1
N log p(x1, . . . , xN) for 100 models in the ensemble, for the orig-

inal data (red), new data (blue), and randomized data (green, around 15% zero likelihood
values [log p = − ∞] not shown).

the gene’s expression level. The distribution of
Xi depends on the expression level of a set of
parent genes chosen from a list of candidate
regulators. Genes regulated by the same par-
ents form a cluster and share the same model
parameters. The joint probability distribution
for the expression levels of all genes decomposes
as a product of conditional distributions,

p(x1, . . . , xN ) =
K∏

k=1

∏

i∈A k

p k (x i | {x r : r ∈ Rk }) ,
(1)

where {Ak , k = 1, . . . , K } is the set of clusters
(i.e., a partition of the gene set {1, . . . , N }) and
Rk is the set of regulators for cluster k. The dis-
tribution (Eq. (1)) is normalized if the network
from parents to children is acyclic. The condi-
tional distribution pk of the expression level of
the genes in cluster k is a normal distribution
with parameters determined by the expression
levels of the parents Rk :

p k (x | {x r : r ∈ Rk }) = p(x |μ�, τ�). (2)

The parameters μ� and τ� are determined by
arranging the parents in a decision tree. The
tests on the nodes of the decision tree are of
the form ‘x r >z?’ for some threshold value z,
where xr is the expression value of the parent
r associated to the node. The leaves � of the
decision tree are the sets of an experiment par-
tition for cluster k, and μ� and τ� are the mean,
respectively precision of the expression levels of
the genes in the cluster in this subset of experi-
ments. See Ref. 14 for more details.

To evaluate a model of the form (Eq. (1)),
we are only interested in genes for which the
model makes actual predictions, namely, genes
belonging to clusters with a regulation tree. If
the clustering procedure does not find distinct
experiment clusters for a certain gene cluster,
the model predicts one broad normal distri-
bution for the genes in this cluster. Any ex-
pression data for these genes will fit the model
and thereby obscure the signal of the genes for
which true predictions are made. For the partic-
ular data used in the Model Evaluation section,
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the number of genes in the new dataset is 4,292,
versus 4,345 in the dataset used to learn the
models. Six of the missing genes belong to the
regulator list for the learned models. Hence in
some models we may not be able to compute
the conditional probability distributions for all
genes. Altogether around 2,700 genes remain
for each model.

Software Availability

The Java software package LeMoNe for
learning module networks is available from
our website http://bioinformatics.psb.ugent.
be/software/details/LeMoNe.
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