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ABSTRACT

Motivation: The solution of high-dimensional inference and predic-
tion problems in computational biology is almost always a compro-
mise between mathematical theory and practical constraints such as
limited computational resources. As time progresses, computational
power increases but well-established inference methods often remain
locked in their initial suboptimal solution.

Results: We revisit the approach of Segal et al. (2003) to infer
regulatory modules and their condition-specific regulators from gene
expression data. In contrast to their direct optimization-based solution
we use a more representative centroid-like solution extracted from
an ensemble of possible statistical models to explain the data. The
ensemble method automatically selects a subset of most informative
genes and builds a quantitatively better model for them. Genes which
cluster together in the majority of models produce functionally more
coherent modules. Regulators which are consistently assigned to a
module are more often supported by literature, but a single model
always contains many regulator assignments not supported by the
ensemble. Reliably detecting condition-specific or combinatorial regu-
lation is particularly hard in a single optimum but can be achieved
using ensemble averaging.

Availability: All software developed for this study is available from
http://bioinformatics.psb.ugent.be/software.

Contact: tom.michoel@psb.ugent.be

Supplementary information: Supplementary data and figures are
available from http://bioinformatics.psb.ugent.be/supplementary_data/
anjos/module_nets_yeast/.

1 INTRODUCTION

One of the central goals of the top-down approach to systems
biology is to infer predictive mathematical network models from
high-throughput data. Much of the driving force for the develop-
ment of network inference methods has come from the availability
of various types of large-scale data sets for particular model orga-
nisms like S. cerevisiae and E. coli. In contrast, data generation
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for other organisms has been much slower and mainly focused on
gene expression data. These gene expression data sets for typically
more complex organisms pose their own challenges, such as a hig-
her number of genes, limited number of experimental conditions,
and supposedly a more complex underlying transcriptional network.
Therefore, improvement and refinement of methods for network
inference from gene expression data continues to be of great inte-
rest. Several reviews on a variety of methods have been written
(Friedman, 2004; Gardner and Faith, 2005; Bansal et al., 2007; Bus-
semaker et al., 2007), and development of new methods remains
an active area of research (Basso et al., 2005; Faith et al., 2007;
Bonneau et al., 2006; Alter and Golub, 2005). Here we revisit the
module network method of Segal e al. (2003) to infer regulatory
modules and their condition-specific regulators from gene expres-
sion data and show that better and more refined module networks
can be obtained by using advanced statistical and computational
methods. These improvements concern the use of Monte Carlo
(Liu, 2004) and ensemble strategies (Carvalho and Lawrence, 2007;
Webb-Robertson et al., 2008).

Following Hartwell et al. (1999) a ‘module’ is to be viewed as a
discrete entity composed of many types of molecules and whose
function is separable from that of other modules. Understanding
the general principles that determine the structure and function of
modules and the parts they are composed of can be considered one
of the main problems of contemporary systems biology (Hartwell
et al., 1999). The module network method of Segal er al. (2003)
addresses this problem using gene expression data as its input. It has
yielded novel biological insights in a number of complex eukaryotic
systems (Segal er al., 2003; Lee et al., 2006; Segal et al., 2007; Zhu
et al., 2007, Li et al., 2007; Novershtern et al., 2008) and has been
the source of inspiration for numerous computational approaches to
network inference as evidenced by its high number of citations. A
module network is a probabilistic graphical model (Friedman, 2004)
which consists of modules of coregulated genes and their regulatory
programs. A regulatory program uses the expression level of a set
of regulators to predict the condition dependent mean expression
of the genes in a module. Segal et al. (2003) used a deterministic
optimization algorithm that searches simultaneously for a partition
of genes into modules and a regulation program for each module.
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We consider both as separate tasks. When searching for modules,
often many local optima exist with partially overlapping modules
differing from each other in a few genes. We use a Gibbs sampling
approach for two-way clustering of genes and conditions to generate
an ensemble of partially overlapping partitions of genes into modu-
les and produce an ensemble averaged solution (Joshi et al., 2008).
This centroid solution consists of so-called tight clusters, subsets of
genes which consistently cluster together in almost all local optima.
We also use a probabilistic method for learning regulatory programs.
These regulatory programs take the form of fuzzy decision trees
with regulator expression levels at the decision nodes and genera-
lize the regression tree approach of Segal et al. (2003). By summing
the strength with which a regulator participates in each member
of an ensemble of regulatory programs for a certain module, we
obtain a regulator score which gives a statistical confidence measure
for the assignment of that regulator. Together, the Gibbs sampling
cluster algorithm and probabilistic regulatory program learning pro-
vide a computationally efficient method to generate ensembles of
module networks from which a centroid-like summarization can be
constructed.

We have applied this ensemble method to the very same data set
as Segal er al. (2003) and performed several comparison tasks. First,
we considered the probabilistic models and evaluated them on trai-
ning as well as test data. We show that the model inferred by Segal
et al. (2003) is equivalent to a single instance of the ensemble of
models inferred by our algorithm. The tight clusters obtained from
the ensemble solution generate a quantitatively better model than
each of the single instances, including the model of Segal et al.
(2003). Second, we compared the clustering of genes. Tight clu-
sters are in general more functionally coherent and improve the
original modules in two ways. They can remove spurious profiles
and fetch only the core of tightly coexpressed genes from a single
module, or they can merge separate but related modules into one
cluster. Third, we used the regulator score to analyze the network of
modules and their associated regulators from Segal et al. (2003). We
show that this network contains both high- and low-scoring regu-
lators and that several high-scoring regulators are missed by the
solution of Segal er al. (2003). In general, regulator assignments
which can be validated by external sources such as ChIP data or
literature are highly ranked. In combination with the tight clusters,
the probabilistic method assigns more regulators supported by lite-
rature and the clusters to which they are assigned contain a higher
ratio of known targets compared to the module network of Segal et
al. (2003). Fourth, we show that the regulator scoring scheme can
also be used to infer context-specific and combinatorial regulation
by identifying pairs of regulators which occur significantly often
together in the same regulation program.

Finally we have applied the ensemble method to a bHLH module
network that was recently inferred for mouse brain (Li ez al., 2007).
Li et al. (2007) used their module network to make several hypothe-
ses about modes of combinatorial regulation among different brain
tissues. We show that only few of these hypotheses are statisti-
cally supported by the ensemble method. This example illustrates
the usefulness of an approach which can generate internal signifi-
cance measures, in particular if no other data sources are available
to validate hypotheses generated by a single local optimum.

Together all these results convincingly show that the ensem-
ble method for learning module networks significantly improves
the direct optimization method of Segal er al. (2003). Unlike a

single optimum, ensemble averaging allows the assessment and
prioritization of the statistically most reliable modules and their
condition-specific regulators. Such high-confidence modules can be
used directly for generating experimentally verifiable hypotheses or
can be integrated with other, perhaps smaller-scale, data sources to
create a more comprehensive view of the underlying networks.

2 RESULTS AND DISCUSSION
2.1 Data and procedure

We obtained all data from the supplemental website of Segal et al.
(2003), including expression data, gene modules and regulatory pro-
grams. Using the Gibbs sampler we generated 12 different partitions
of genes into modules which were combined into one set of tight
clusters. The number of clusters is determined automatically by the
Gibbs sampler and ranges from 65 to 78 in the different runs, com-
pared to the predefined value of 50 of Segal et al. (2003). 1892 of
the 2355 genes in the data set could be assigned with high confi-
dence to 69 tight clusters. To generate regulator assignment scores,
we learned 10 probabilistic regulation programs per module with
100 regulator and split value pairs sampled per regulation program
node. More details about these procedures are given in the Methods.
This resulted in four different module network models:

1. SCSR: Segal clusters with Segal regulation programs, corre-
sponding exactly to the results of Segal et al. (2003).

2. SCPR: Segal clusters with probabilistic regulation programs.

3. GCPR: Gibbs sampler clusters (single run) with probabilistic
regulation programs.

4. TCPR: Tight clusters (multiple Gibbs sampler runs combined)
with probabilistic regulation programs.

2.2 Model evaluation

A module network infers a probabilistic model which explains rela-
tions between expression levels of a set of genes. More precisely,
there is a probability distribution p(xj, ..., xx) which computes the
probability (density) to observe a particular combination of expres-
sion levels x; for a set of N genes. This probabilistic model predicts
the response in expression of genes in a module upon perturbati-
ons of its regulators, such as knock-out or overexpression, and thus
yields biologically verifiable hypotheses. For a module network, the
distribution p(x, ..., xy) is a product of N factors (see Methods),
so we consider the normalized quantity £ = % log p(x1,...,xN)
which can be compared between models with potentially different
numbers of genes. Higher values of £ mean better explanation of
the data by the model, i.e. more accurate prediction of the outcome
of new experiments.

First we performed evaluations on each of the conditions in the
original data set. Figure 1 (a) shows that the histogram of £-values
for SCPR fits well within a non-parametric curve fit of the histogram
for GCPR. This implies that the clusters found by Segal et al. (2003)
are equivalent to one local optimum identified by the Gibbs sampler
procedure. Figure 1 (b) shows the histogram of £-values for SCSR
(red) overlayed on the histogram for SCPR (blue), both with non-
parametric curve fits. The mean L-values obtained by SCPR are
higher than SCSR by a one-tailed ¢-test (¢ = 0.01) proving that
probabilistic regulation programs give a better explanation of the
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Fig. 1. Model evaluation experiments. (a) Histogram of £ =
% log p(x1,...,xy) for SCPR (blue) and non-parametric fit of the histo-
gram for GCPR (black curve). (b) Histogram of £ for SCSR (red) overlayed
on histogram of £ for SCPR (blue), with non-parametric fits (black curves).
(c) Histogram of £ for SCPR (blue) overlayed on histogram of £ for TCPR
(magenta), with non-parametric fits (black curves). (d) Histogram and non-
parametric fit (left black curve) of £ for GCPR learned on training data and
evaluated on test data (green) and non-parametric fit of the same models
evaluated on training data (right black curve). All histograms and curves are
normalized to have area equal to 1.

data. In Figure 1 (c) we compared SCPR to TCPR. TCPR has a
higher mean £ than SCPR with a one-tailed t-test (¢ = 0.01). This
shows that tight clusters are selecting a subset of genes which are
the most informative and therefore generate a better model.

Next we tested how well these models explain unseen data by
performing a cross-validation experiment. We removed 10% of the
conditions at random from the complete data (the test set) and ran
the Gibbs sampler once on the remaining 90% (the training set).
The resulting model was then evaluated on the test set. This proce-
dure was repeated 10 times and all test set evaluation values were
collected in one histogram and compared to the training set values
(Figure 1 (d)). The curve of the test set is slightly shifted to the
left with respect to the training set curve, as one would expect, but
both curves have the same mean with a one-tailed ¢-test (o = 0.01).
This shows that the probabilistic models indeed generalize to unseen
data.

2.3 Gene clustering improvement

We have shown in the previous section that SCPR is equivalent to
GCPR but TCPR gives a better model over SCPR. We also observe
that tight clusters (TC) are overall more functionally coherent than
the clusters obtained in Segal er al. (2003) (SC). Figure 2 shows
the fraction of genes in a cluster belonging to a MIPS functional
category which is significantly overrepresented (p < 0.001) in SC
and TC. Several examples illustrate the general trend seen in this
figure. In TC-40, 4/7 genes are involved in amino acid transport
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Fig. 2. Histogram of the highest fraction of genes in one module in a MIPS
functional category for TC (red) and SC (blue), sorted by ratio difference.

Fig. 3. TC-7 with Hap4 assigned as a top regulator. Genes known to be
regulated by Hap4 in YEASTRACT are marked in blue and those involved
in respiration are marked in orange.

compared to SC-27 with 8/53 genes. In TC-27, 7/9 genes belong to
purine nucleotide anabolism compared to SC-11 with 6/53 genes.

Segal cluster 1 (SC-1) contains 55 genes, out of these 32 (58%)
are validated targets of Hap4, a global regulator of respiratory genes,
according to the YEASTRACT database (Teixeira et al., 2006). This
cluster has maximum overlap with tight cluster 7 (TC-7) with 30
genes out of which 25 (83%) are known Hap4 targets. The five
remaining genes are Qcr6, Cox5a and Fuml, all located in mit-
ochondrion and involved in respiration, and two unknown genes
Ygl188c and Ygr182c. With 24/30 respiratory genes (80%), TC-
7 even improves on COGRIM (Chen et al., 2007) which combines
multiple data sources. Using expression data alone (the same data
set as Segal et al. (2003)), Chen et al. (2007) obtain a cluster with
32/51 (62%) genes belonging to MIPS respiration category. Using
both ChIP and expression data, they obtain a cluster with 23/34
(68%) respiratory genes, significantly lower than TC-7. Figure 3
shows TC-7 with known Hap4 targets and respiratory genes marked
in blue and orange respectively.

TC-27 contains nine genes which form a subset of SC-11 contai-
ning 53 genes (Figure 4 (a)). Six genes (67%) in this cluster are
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Fig. 4. (a) TC-27 fetches the core of tightly coexpressed genes from SC-11;
67% genes in TC-27 are known to be Bas|1 targets. (b) SC-8 and SC-9 which
have similar expression are merged into TC-11. SC-8, SC-9 and TC-11 all
are enriched for Gatl targets.

known Basl targets compared to only 18% Basl targets in SC-
11. TC-28 and TC-37 contain 70% and 100% known targets of
Msn4. These clusters have a large overlap with SC-3 and SC-41
respectively, which have 55% and 93% known targets of Msn4.
TC-1 consists of 51 genes, out of which 28 (55%) are known to
be Swi4 targets. This module merges genes from SC-10, 29 and
30. They have 4/37 (11%), 19/41 (46%) and 8/30 (27%) Swi4 tar-
gets respectively. TC-11 contains genes of SC-8 and SC-9 whose
highest ranked regulator is Gatl (see Section 2.4) (Figure 4 (b)).
YEASTRACT data confirms 17% of these targets, while for SC-8
and 9 overall 15% targets are confirmed by YEASTRACT. TC-35 is
overrepresented for genes involved in RNA export from nucleus (p-
value 1078). It overlaps with SC-19, 31 and 36 (p-values ~ 1073).
TC-31 contains genes mainly involved in ribosomal biogenesis (p-
value 10713) and combines relevant genes from SC-13, 14 and 15
(p-values ~ 107%).

We conclude that tight clusters improve clustering results obtai-
ned by Segal er al. (2003) in two ways. They can fetch only the core
of tightly coexpressed genes from a SC (Figure 4 (a)), or they can
merge clusters which were separate in SC (Figure 4 (b)).

2.4 Regulator assignment prioritization

The ensemble approach generates multiple equally plausible regu-
latory programs for a single module in a probabilistic fashion. The
regulator assignment score which takes into account how often a
regulator is assigned to a module, with what score, and at which
level in the regulation tree, can therefore be used to prioritize
regulators (highest regulator score gets topmost rank).

First we consider only the difference between probabilistic regu-
lator assignment and the original method by comparing SCSR with
SCPR, hence keeping the gene modules the same for both methods.
Figure 5 shows regulator-module links in SCSR (cfr. Figure 5 in
Segal et al. (2003)). The edges colored red are the ones suppor-
ted by literature (data from Segal er al. (2003)). To each edge we
add the rank with which it is assigned in SCPR. Regulator-module
links supported by literature have often a higher rank. SCSR assigns
Hap4, a global regulator of respiratory genes, to SC-1. This clu-
ster contains 58% known Hap4 targets and Hap4 has second highest
rank in SCPR. SCSR also assigns Hap4 to SC-10 which contains
genes involved in amino acid metabolism. SC-10 has only 2/37 (5%)
known Hap4 targets according to YEASTRACT and this assignment
is ranked very low (rank 73) in SCPR. Several high-ranking SCPR
assignments which were missed by SCSR could also be validated

using Harbison et al. (2004) data (p-value < 0.005). We assign
Gal80, a transcriptional regulator involved in the repression of Gal
genes in the absence of glucose, with second rank to SC-6. This is
a cluster of four Gal genes, Gall, Gal2, Gal7 and Gall0. Met32, a
zinc-finger DNA-binding protein involved in transcriptional regula-
tion of the methionine biosynthetic genes assigned with third rank
to SC-8, and Gisl, a histone demethylase assigned to SC-3 with 5th
rank, are supported by YEASTRACT (respectively 5/29 and 6/31
known targets).

Next we compared TCPR with SCSR to analyse the combined
improvement made by ensemble averaging at the level of gene clu-
stering as well as at the level of regulator assignment. For TCPR, we
selected the top six regulators for each cluster. This rank cutoff was
determined as follows. We computed the significance for the over-
lap between each tight cluster and each transcription factor target
set using the YEASTRACT database. A reference module network
was formed by keeping all transcription factor - tight cluster edges
below a certain p-value cutoff. By comparison with this reference
network we found that a rank cutoff of six gives the best overall
F-measure score at different p-value cutoffs (see Supplementary
information). A similar analysis for SCSR shows that the F-measure
for TCPR is consistently higher (see Supplementary information).
To compare TCPR and SCSR in more detail, we identified for each
regulator the cluster with the highest fraction of known targets in
YEASTRACT. Likewise we find the best cluster for each regulator
in SCSR. Figure 6 shows that TCPR assigns more regulators sup-
ported by YEASTRACT and also that the clusters contain a higher
ratio of known targets. There are six regulators assigned by both
methods, four of which HAP1, GAT1, TOS8 and XBP1 all are assi-
gned to clusters more enriched in their known targets in the TCPR
solution.
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Fig. 6. Histogram of the highest fraction of known targets of transcription
factors in a module using TCPR (red) and SCSR (blue) according to the
YEASTRACT database. The rank with which a regulator is assigned to a
module in TCPR is indicated in brackets.




Module networks revisited

Al
el [=]

Fig. 5. Module network inferred by Segal et al. (2003) with edge-ranks computed by the ensemble method described in the current paper. Red edges mean

the module is overrepresented in known targets of the connected regulator.

2.5 Context-specific and combinatorial regulation

Segal et al. (2003) used a decision tree approach to model regulatory
programs because it can represent, at least in principle, context-
specific and combinatorial regulation. In the ensemble language,
context-specificity means a regulator gets a high overall score by
being assigned consistently to a lower, non-root level in the set of
decision trees for a certain module. In SCPR, 59 regulator assi-
gnments divided over 39 (out of 50) modules have a significant
score contribution (value > 100) from a non-root level (see the
Methods for the decomposition of the score function over different
tree levels). Combinatorial regulation means two (or more) regu-
lators are consistently assigned together at different levels in all
decision trees. Although this form of combinatorial regulation may
correspond to genuine biological combinatorial regulation, we take
a strictly data driven definition here: combinatorial regulation in the
decision tree sense means the expression levels of both regulators
are needed rogether to explain the expression level of the module
(‘AND’ regulation). Alternatively, two (or more) high-scoring regu-
lators may achieve their high rank from the same decision tree level
(usually the root level). In this case both regulators explain the
module equally well alone (‘OR’ regulation). In SCPR, there are
a total of 100 regulator assignments with significant score contri-
bution from the root level (OR regulation), which can be combined
with the 59 assignments at level 1 for potential AND combinatorial
regulation.

Only few of the significant AND combinatorial regulation pairs
are present in the single-optimum solution of SCSR (see edge ranks
in Figure 5). SC-47 has Gen20 as the highest ranked regulator at
level 0 and Cnbl at level 1, and both assignments are supported by
literature. SC-36 has two validated regulators Gen20 and Not3 ran-
ked first and third respectively in SCPR, but the score of Not3 is
low and not deemed significant. SC-4 is an example of OR regula-
tion wrongly assigned in SCSR. In SCSR, YpI230w is assigned at

level 0 and Gacl at level 1, but in SCPR both are assigned at level
0 with first and third rank respectively and no high-scoring regula-
tor is found at level 1. Some of the AND combinatorial regulation
pairs in SCPR that were missed in SCSR can be validated by YEA-
STRACT. SC-40 has Tos8 assigned at level O (overall rank 1) and
Yapl at level 1 (overall rank 2). Tos8 has 3/15 known targets in this
module while Yapl has all known targets (15/15). SC-26 has Gacl
at root level (overall rank 1) and Mall3 at level 1 (overall rank 2).
Mal13 has two known targets (out of six known) in SC-26.

Due to the high number of possible regulator combinations, iden-
tifying statistically significant regulation of AND-type is an even
more complex problem than simple regulator assignment. These
examples show that also for this problem, the ensemble approach
is well suited.

2.6 Module network in mouse brain

Recently, Li et al. (2007) reconstructed a bHLH transcription fac-
tor regulatory network in mouse brain by a direct application of the
method of Segal et al. (2003). They selected a small data set of 198
genes and 22 conditions, built a module network using 22 bHLH
transcription factors as candidate regulators and assigned 15 diffe-
rent regulators to 28 modules (denoted again by SC), out of which
12 (43%) have at least two genes in the same GO category. Based
on the co-occurence of regulators in the regulation programs of indi-
vidual modules, Li et al. (2007) make hypotheses about different
modes of coregulation among brain tissues which are currently not
confirmed by other data sources. We applied the ensemble method
on this data set and got 17 tight clusters (TC), out of which 11 (65%)
have at least two genes in the same GO category.

Only 11/28 SC have a high-scoring regulator with a significant
score contribution from a non-root level, compared to 39/50 for
yeast. Li e al. (2007) use the co-occurrence of Neurod6 and Hey2
in the SR regulation programs of SC-10, 15 and 27 to predict a
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cross-repression between Neurod6 and Hey2 with different modes
of coregulation in different brain tissues. In the probabilistic regula-
tion programs (PR), Hey? is the highest ranked regulator for SC-10,
consistently assigned to the root level. However, at level 1, there
are three equally good regulators Hes5 (overall rank 4), Neurod6
(overall rank 5) and Npas4 (overall rank 2). For SC-15, Neurod®6 is
the highest ranked regulator, consistently assigned to the root level,
but the assignment of Hey2 at level 1 has a very low score (over-
all rank 4). For SC-27, we find consistent assignments of Hey2 at
root level with overall rank 1 and Neurod6 at level 1 with overall
rank 2. Thus the cross-repression mechanism predicted by Li ez al.
(2007) is supported only in the case of SC-27 and not SC-10 and 15.
This example underscores the usefulness of an ensemble method
to assess confidence levels of predicted interactions, especially in
cases with limited amount of expression data and no other validation
sources available.

3 CONCLUSIONS

We have reexamined the module network method of Segal et al.
(2003) and compared an ensemble-based strategy to the standard
direct optimization-based strategy. Ensemble averaging selects a
subset of most informative genes and builds a quantitatively bet-
ter model for them. It finds functionally more coherent tight gene
clusters and is able to determine the statistically most significant
regulator assignments. The difficult problem of identifying multiple
regulators which explain together, but not separately, the expres-
sion of a module can be addressed in a reliable way. The ensemble
method is thus able to deliver the promise to infer context-specific
and combinatorial regulation through the probabilistic module net-
work model.

4 METHODS

4.1 Bayesian two-way clustering

We associate to each gene i a continuous valued random variable X; mea-
suring the gene’s expression level. For a data matrix D = (x;,) with
expression values for N genes in M conditions, the module network model
of Segal et al. (2003) gives rise to a probabilistic model for two-way clusters,
where a two-way cluster k is defined as a subset of genes Ay C {1,..., N}
with a partition & of the set {1, ..., M} into condition clusters. The Baye-
sian posterior probability for a set of coclusters (A, &), denoted C, is given
by

Pros@ % [T TT [/ dude ptec) TT TT ptoin 1 92
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where p(x | u,7) is a normal distribution with mean x and precision 7
and p(u, 7) is a normal-gamma distribution (see Segal et al. (2005) or Joshi
et al. (2008) for more details). We use the Gibbs sampler strategy developed
in Joshi et al. (2008) to sample multiple high-scoring coclusterings from this
posterior distribution. From these multiple solutions we extract tight gene
clusters using the procedure outlined in Joshi et al. (2008). It consists of a
graph spectral method extracting densely connected regions from the graph
on the set of genes with edge-weights p;;, the frequency that gene i and j
belong to the same cocluster in each of the sampled solutions.

4.2 Probabilistic regulatory programs

For each set of conditions E in the condition partition & for a given module
k we have an associated normal distribution with parameters (u g, 7g) which

can be estimated from the posterior distribution. Hence such a condition set
can be interpreted as a discrete expression state for the module. A regula-
tory program ‘predicts’ the expression state of any condition in terms of the
expression levels of a small set Ry of regulators, i.e., there is a conditional
distribution

p(xi [ {xr,r € Ri}) = p(xi | e, TE).

The selection of an expression state is done by constructing a decision tree
with the states E € & at the leaves. To each internal node 7, we associate
a regulator r, and split value z;. In Segal e al. (2003), the decision at the
node is based on the test x,, > z; or x,, < z;. Here we extend this model
to allow fuzzy decision trees. More precisely, we sort the expression states
E € & by their mean u g, and link this ordered set hierarchically. Then we
can associate to each internal node a binary variable y; = +1, where y; =
—1 means ‘decrease expression state’ (go ‘left’ in decision tree) and y; =
41 means ‘increase expression state’ (go ‘right’ in decision tree). Again we
also associate a regulator r; and split value z; to node ¢, and a conditional
probability

1
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Given expression values x, for all r € Ry, we traverse the decision tree in a
probabilistic fashion, taking the decision y; = =1 at each node ¢ by tossing
a biased coin with bias eq. (1). The original model with hard decision trees
is recovered if f; = fo00 for each node.

The conditional distribution or regulatory program now becomes a normal
mixture distribution

plxi 1, r e Rid) = D ap(fxy, r € Ri}) plei | pe,7e)  (2)
Ee&

where

(XE({Xr,V € Rk}) :Hp(yt | Xrs 205 Br)
t

with the values y, determined by the unique path through the decision tree
that ends at leaf E.

For a cocluster (A, &) inferred from a data set D = (x;,,) by the method
summarized in the previous section, we can derive a posterior probability
function for each regulator at each node ¢ as follows. First note that each
condition m belongs to exactly one set E in A, and hence determines a
unique path through the decision tree, or in other words a set of values y; ,,
at each node ¢. Furthermore, each node ¢ has an associated condition set E;
consisting of the union of all condition sets £ which can be reached from
node . Hence we can define at each node a posterior probability by

Ppos(r.2) o max(( [T pGn | 50m-2. ) 3

mekE;

where for computational simplicity we maximize over f instead of margina-
lizing over a prior distribution. By allowing only a discrete set of split values,
eq. (3) becomes a discrete distribution from which it is easy to sample. Typi-
cally, we consider as possible split values z the expression values x,.,, for
m € E;, but simpler schemes such as only allowing one or two split values
can be used to reduce computation time for large data sets.

The posterior probability eq. (3) measures how well the expression values
of a regulator ‘predict’ the partition into two sets of E; induced by the con-
dition partition &. We define the average prediction probability of (r, z) at
node ¢ by the geometric average

1/1E¢]
pi(r,2) = ( H p()’t,m | Xrms Zs ﬁmax)) 5 4)
mekE;

where fmax is the maximizer in eq. (3).

4.3 Regulator assignment score

To assess the significance Z, (r) for assigning a regulator r to a node ¢ in a
certain regulation program, we use the average prediction probabilities (eq.




Module networks revisited

(4)) and define:

Zr(")=wtzpr("»z)- 5)

Z

A typical choice for the weight factor w; is w; = %, expressing that we
have more confidence in assignments to nodes supported on more conditions.
The sum »__ runs over the discrete set of split values for regulator r at node
t. The overall significance Z(r) for assigning a regulator  to a module is
defined by summing eq. (5) over all nodes of all regulation programs for that

module:
Zr)y= > D Zi(r).

TeT teT
4.4 Model evaluation

For an experiment with expression levels (xi, ..
probability distribution

., XN ), we can evaluate the

N
px1, ..., xN) = Hp(xz' | {xr, 7 € Ri})s

i=1
with k(i) the module to which gene i belongs and R the regulator set of
module k, using the conditional distributions (2). We only consider genes for
which the model makes actual predicitions, i.e., genes belonging to clusters
with a regulation tree. For the cross-validation experiment, we removed 10%
of the conditions randomly from the total of 173 conditions. We learned
module networks on the remaining 90% data and repeated this procedure 10
times.

4.5 Data sets

Yeast expression data for 2355 differentially expressed genes in 173 stress
conditions, gene clusters, their regulators, split values and regression trees
were downloaded from the supplemental website of Segal ef al. (2003) at
http://robotics.stanford.edu/~erans/module_nets/. MIPS functional catago-
ries were downloaded from ftp://ftpmips.gsf.de/catalogue/annotation_data.
For TC and SC we calculated the p-value whether the overlap between
a given cluster and a given functional catagory is statistically significant.
We used data on genome-wide binding and phylogenetically conserved
motifs for 102 transcription factors from Harbison et al. (2004). For a given
transcription factor, only genes that were bound with high confidence (signi-
ficance level « = 0.005) and showed motif conservation in at least one
other Saccharomyces species (besides S. cerevisiae) were considered true
targets. We also downloaded all known regulator target interactions from
the YEASTRACT database http://www.yeastract.com. We calculated the p-
value whether the overlap between a given cluster and a given transcription
factor target set is statistically significant.

Mouse expression data by Su et al. (2004) was downloaded from
http://wombat.gnf.org and the data selection and normalization was done as
described in Li et al. (2007).
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