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ABSTRACT

Motivation: In this age of complete genome sequencing,
finding the location and structure of genes is crucial for
further molecular research. The accurate prediction of
intron boundaries largely facilitates the correct prediction
of gene structure in nuclear genomes. Many tools for
localizing these boundaries on DNA sequences have been
developed and are available to researchers through the
internet. Nevertheless, these tools still make many false
positive predictions.

Results: This manuscript presents a novel publicly
available splice site prediction tool named SpliceMachine
that (i) shows state-of-the-art prediction performance on
Arabidopsis thalianaand human sequences, (ii) performs a
computationally fast annotation, and (iii) can be trained by
the user on its own data.

Availability: Results, figures and software are available
from http://bioinformatics.psb.ugent.be/supplementary_data/

Contact: Sven.Degroeve,Yves.Vandepeer@psb.ugent.be

INTRODUCTION

speaking, predicting the location of a splice site can be
seen as a classification task. Although many eukaryotic
organisms contain two kinds of spliceosomes splicing
two types of introns, U2-type and Ul2-type, the vast
majority of introns are U2-type (Patedt al, 2003)
where the donor site practically always contains the GT
dinucleotide at the intron boundary, GC being observed in
less than 1% of the cases. This donor site is recognized by
the Ul snRNA of the spliceosome through base-pairing
with an ACUUACCU motif, and should ideally have
the AG/GTAAGT pattern. Nevertheless, the base-pairing
recognition is rather loose, i.e. the donor site pattern is less
clear and tolerates many replacements in the motif, except
for the border GT. The acceptor is observed to always
contain the AG dinucleotide at the intron border with an
even less clear pattern surrounding the dinucleotide. As
such, all GT (resp. AG) dinucleotides on the DNA are
defined as candidate donor (resp. acceptor) sites and need
to be classified as either an actual (true) site or a pseudo
(false) site.

Through the fast pace of the sequencing of genes and
their cognate transcripts, the number of experimentally
identified eukaryotic donor and acceptor sites has grown

An increasingly important task in bioinformatics is to extensively over the last decade. The accumulation of
analyse genome sequences for the location and structupgiblicly available biological data has boosted genomic
of their genes, often referred to as gene prediction oresearch in the field of Machine Learning and the predic-
gene finding. For most eukaryotic nuclear genomes, #on of splice sites became again a challenge @ail.,
gene usually consists of a set of coding fragments, knowd000; Dasket al, 2001; Yeo, 2003; Castelet al, 2004).

as exons, which are separated by non-coding interveningecent approaches based on discriminant functions such
fragments, known as introns. The boundaries of thesas Winnow (Chuangt al, 2001) or the Support Vector
introns are called the splice sites, the 5’ boundary idMachine (SVM) (Sonnenburgt al, 2002; Degroeveet
termed the donor site and the 3’ boundary is termed thal., 2002; Suret al,, 2003) show significant improvements

acceptor site.

in prediction performance compared to previously used

Current gene prediction systems tend to have a modulaystems such as NetPlantGene (Hebsgeaml., 1996),
structure, combining the outputs of several componentbletGene2 (Tolstrupet al, 1997), SPL, SplicePredic-
that are each specialized in recognizing specific structurdabr (Brendelet al, 1999) and GeneSplicer (Pertetal,

elements of a gene (Matltet al, 2002). An important

2001). Nevertheless, these approaches have not yet been

component is the splice site predictor. Computationallimplemented as a tool that can be used by researchers for
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annotating genome sequences. and ¢ adjacent nucleotides downstream the GT or AG
This manuscript presents a novel publicly availabledinucleotide. Throughout this paper, the following local
splice site prediction tool named SpliceMachine thatcontext p = 6, ¢ = 7) around a candidate donor site is
(i) shows state-of-the-art prediction performance onused to exemplify the terminology introduced:
Arabidopsis thalianaand human sequences, (i) can
be trained by the user on its own data, (i) perffooms acttcgGTagcc t c ¢
a computationally fast annotation and (iv) is intuitive 123456 789 10 11 12 13
and can provide biological knowledge extracted from )
the data. Our approach employs Linear Support Vectofositional Information ,
Machines (LSVM) to compute a linear classification The information extracted is the presence or absence
boundary between actual and pseudo splice sites. F&f @ nucleotide at a position in the local context subse-
this, a candidate splice site is represented as a featufslence. We will refer to this feature set as P1. fet
vector, each feature containing some information aboup€ @ binary feature from P1 that has value one if the
the candidate splice site and its context in the sequenc8Uucleotide at positiors in the local context sequence is
This context is defined as the subsequence that starts @With v € {a, ¢, g,¢}. For the candidate donor site (see
p nucleotide positions upstream the candidate splice sitgX@mple) the following features in P1 have a value equal
and ends at positions downstream the candidate splicet® one (all other features have value zero):
site. fl,al f2,cu f37tv f4,tl f5,ca f67g! f?,al f8,gv f9,ca flO,ca fll,t:
We define features sets in order to capture the positionaﬁlz,c and f13 ..

nucleotide preferences observed in close proximity to ) )
the donor and acceptor site, the preference for certaifi® account for the correlations that exist between nu-

oligomers in the neighborhood of splice sites (Létal, cleotide p(_)sitions certain types of concatenations are
2001), and the codon bias upstream donor and downstreaff€ated using the features in P1. Feature sets P2 and P3
acceptor sites. We propose a model-based procedure fBxtract the presence or absence of a di- or tri-nucleotide
optimizing the parameters and ¢ for each of these @t & positionin the local context subsequence..Lbe a
feature sets as well as the cost paramétaf the LSVM di-nucleotide then for the feature set P2 (similarly for the
(described further) and show that this leads to a significarfe@ure set P3) the following features have a value equal

boost in the prediction performance of the system. to one:

fl,am f2,ctv fS,tt1 f4,tc1 f5,cga f7,aga fS,gc’ f9,cca flO,ct’
METHODS AND DATA frves fra.ce:
Local Context Representations Compositional Information

This section describes the feature vector representatiorfhe information extracted is the presence or absence of

of candidate splice sites. The first type of features refers tindividual tri-, tetra-, penta- or hexa-mers in the local

positional informationand should capture the consensusupstream context and in the local downstream context

motif as well as the correlations that exists betweerseparately. We will refer to these feature sets Asv@iere

nucleotide positions in close proximity of the splice site k is the length of the oligometk¢mer) that is considered.

(see introduction). The second type of features refer§ach feature set i€ consists of4* featuresf,, . that

to compositional informationand should capture the indicate the presence or absence ok-mer x in the

presence or absence of discriminative oligomers found impstream context plug® featuresf,o.n .., that indicate

the neighborhood of splice sites. The existence of thesthe presence or absence okamer z in the downstream

oligomers was observed for instance by Letral. (2001)  context. For the candidate donor example the following

and used as discriminative information in SplicePredictorcompositional trimer features (C3) have a value equal to

A third type of information is the codon bias that exists one:

upstream most donor and downstream most acceptof,, .ct, fup.cttr fupitter Sfuptegr faown,ager Faown,gees

sites. This codon bias is also found downstream pseudg, .., cct, faown,ctc ANA faown, tec-

donor sites or upstream pseudo acceptor sites that are

extracted from the coding part of a gene. This type ofCoding Potential

information is termeaoding potentiaknd it is similar to  The information extracted is the presence or absence of

the compositional information but split up in each of thecodons in each of the three possible reading frames of

three possible reading frames as explained further. both local upstream and downstream context separately.
All of the features are extracted from a local contextLet us assume that the complete context of our candidate

subsequence surrounding the candidate splice site. Theste is a coding sequence, i.e. the candidate site would

local context consists g adjacent nucleotides upstream be a pseudo splice site. We can then write this context




sequence in each of the three possible reading frameBata

For each of the three reading framBS(R = 1,2,3) 64 |, 3 first benchmark, we compiled our owArabidopsis
featuresfr ., are computed for the upstream contextihajianasplice site data set and carefully checked whether
plus 64 featuresfr douwn . for the downstream context. no genes were included that were also in the test set
A feature fr ., . has value one if the upstream contextcgjled AraSet (Paveet al, 1999). AraSet is a set of 168

in reading framel? contains the trimer or codon. This  Arapidopsis thalianagenes which was used to compare
totals 128 x 3 = 384 features in a set we will denote geyeral splice site prediction tools. By evaluating our

RF (for Reading Frame). For the candidate donor sit&pjiceMachine on this set we can compare our results to
presented above the following features in RF have a valug,gse published in Pavgt al. (1999). Our training set

equal to one: was generated by aligning mRNAs (using SIM4; Florea
Frupacts  Truptegs  Joupers faupiier  frdownager et al, (1998)), obtained from the public EMBL database
Fradouncter fo.down,geer Ja.down,tee 8N f3,down,cer- (June 5th 2000), with the BAC sequences that were used

_ . ) , ) for the Arabidopsischromosome assembly. Redundant
The definition of which reading frame is framB IS genes were excluded by counting the neighbors of every
irrelevant as long as it is the same for all candidate S|tes.gene (two genes are neighbors when they show more
Linear Support Vector Machines than 80% id(_entity at the nucleotide level), a_nd discardin_g
. ) the gene with the largest number of neighbors. This
The Support Vector Machine (Boseral, 1992; Vapnik, 1qceq is repeated until no genes with neighbors remain.
1995) is a data-driven method for solving two-classq¢ the 1812 genes obtained from EMBL (Auboueg

classification tasks. The LSVM separates the two classeg unpublished), 1495 genes were kept after removing
in 7" with a hyperplane in the feature space such that:  raqyndant ones. From each gene only these introns

. . . confirming the GT-AG consensus were used to construct
(a) the largest possmle.fractlon of instances of the samg . <ot of actual splice sites. The pseudo donor sites
class are on the same side of the hyperplane, and were, for all genes, defined as all GT dinucleotides that
. . . are located between 300 nucleotide positions upstream of
(b) t_he distance of either class from the hyperplane 'She first donor and 300 nucleotide positions downstream
maximal. of the last acceptor in that gene and that are not donor
sites. The pseudo acceptor sites are defined as all AG
dinucleotides within the same range and that are not
acceptor sites. A sub-sample of this dataset will be used
for optimizing the parameters fokrabidopsis The full
dataset was used to induce tAeabidopsismodels in
pred(z) = t(wz +b). (1) spliceMachine. Training on this set and testing on AraSet
with ¢(z) a function that maps alt greater or equal to a Will be refered to as benchmark B1.
certain threshold to 1 and atlsmaller than that threshold  In @ second benchmark we used the 1328bidopsis
to -1. The hyperplane is computed by maximizing a vectogenes and the 1115 human genes that were used to train
of Lagrange multipliersy in and evaluate the GeneSplicer system in Pegeal.
(2001). A sub-sample of the human dataset was used for
optimizing the parameters for human gene annotation.

The prediction of an LSVM for an unseen instancés
1 (classified as a positive instance)-eil (classified as a
negative instance), given by the decision function

! 1 < The full human dataset was used to induce the final
W(a) = ZO"' ) Z Qi @5 Yi Yj XiX;s human models in SpliceMachine. Training and testing on
i=1 hj=1 these sets will be referred to as benchmark B2ath for

! Arabidopsisand benchmark B2hum for humans.
constrained tod < o; < Cand » a; 4, =0, (2)
im1 Performance measures
C%everal measures have been used to evaluate prediction
&Jerformance. In B1 the authors used sensitivity (Se) and
specificity (Sp) rate defined as

whereC'is a parameter set by the user to regulate the effe
of outliers and noise, i.e. it defines the meaning of the wor
largestin (a).

For the LSVM the relation betweew andc is: TP TP
Se=_——andSp= ——,
! TP+ FN TP+ FP
W= Zai XiYi- where TP, FP and FN are the number of true positives,
i=1 false positives and false negatives, respectively. The




Table 1. Optimal context sizesp(g) for the different feature sets P1-P3 (positional), C3-C6 (compositional), and RF (coding potential) for
both Arabidopsisand human sequences. The lines in bold represent the optimal valugg;jasitained by the model-based optimization
procedure. For each feature set the last line showsgpthe\values with worst performance. The second and the third row are baselines. See
text for more details.

| | Arabidopsis(B1) | humans (B2hum) |

| | donors | acceptors | donors | acceptors |

| | p | ¢ |FN5% | p | ¢ |FN5% | p | ¢ | FN5% | p | q | FN5% |

P1| 60 | 120 | 0.70 80 80 0.57 20 20 0.52 60 60 0.44
100 | 100 | 0.66 | 100 | 100 | 0.55 | 100 | 100 | 0.46 | 100 | 100 | 0.38
50 50 0.68 50 50 0.49 50 50 0.49 50 50 0.44
20 20 0.54 20 | 100 | 0.42 20 | 100 | 0.45 | 100 | 100 | 0.39

P2 | 40 | 120 | 0.67 80 60 0.52 20 20 0.56 20 20 0.44
100 | 100 | 0.61 | 100 | 100 | 0.42 | 100 | 100 | 0.43 | 100 | 100 | 0.35
50 50 0.65 50 50 0.47 50 50 0.49 50 50 0.44
100 | 20 0.49 20 80 0.41 20 | 100 | 0.42 | 100 | 20 0.34

P3| 40 80 0.51 80 60 0.39 20 20 0.47 20 20 0.37
100 | 100 | 0.47 | 100 | 100 | 0.32 | 100 | 100 | 0.36 | 100 | 100 | 0.35
50 50 0.48 50 50 0.38 50 50 0.44 50 50 0.34
80 40 0.43 20 | 100 | 0.26 20 80 0.36 80 20 0.29

C3 | 20 80 0.19 20 60 0.33 80 20 0.16 20 | 100 | 0.40
100 | 100 | 0.15 | 100 | 100 | 0.16 | 100 | 100 | 0.12 | 100 | 100 | 0O.12
50 50 0.18 50 50 0.24 50 50 0.13 50 50 0.19
100 | 20 0.15 | 100 | 20 0.14 20 | 100 | 0.11 | 100 | 20 0.11

C4 | 80 80 0.24 20 80 0.34 80 20 0.21 20 | 100 | 0.44
100 | 100 | 0.21 | 100 | 100 | 0.22 | 100 | 100 | O.16 | 100 | 100 | O0.18
50 50 0.24 50 50 0.28 50 50 0.17 50 50 0.24
60 20 0.17 | 100 | 40 0.22 20 80 0.14 | 100 | 20 0.13

C5 | 80 80 0.24 40 60 0.29 80 20 0.19 20 80 0.42
100 | 100 | 0.21 | 100 | 100 | 0.22 | 100 | 100 | 0.17 | 100 | 100 | 0.20
50 50 0.21 50 50 0.26 50 50 0.16 50 50 0.24
20 40 0.16 | 100 | 20 0.19 20 | 100 | 0.13 | 100 | 20 0.13

C6 | 80 80 0.20 80 80 0.23 | 100 | 100 | 0.17 20 | 140 | 0.35
100 | 100 | 0.18 | 100 | 100 | 0.19 | 100 | 100 | 0.17 | 100 | 100 | O0.18
50 50 0.19 50 50 0.22 50 50 0.15 50 50 0.21
20 20 0.11 | 100 | 20 0.16 20 60 0.11 | 100 | 20 0.12

RF | 20 60 0.24 20 80 0.36 20 20 0.25 20 | 100 | 0.44
100 | 100 | 0.20 | 100 | 100 | 0.22 | 100 | 100 | 0.15 | 100 | 100 | 0.15
50 50 0.24 50 50 0.29 50 50 0.17 50 50 0.21
100 | 20 0.18 | 100 | 20 0.20 20 | 100 | 0.14 | 100 | 20 0.12

performance of GeneSplicer in B2ath and B2hum was class, Sp and FP% ratios can be computed for all Se

measured in terms of Se and false positive rate defined alevels. For the model-based procedure used to optimize
the parameters, ¢ andC' (see further) the Sp ratio at 5%

EP%— EE ] false negative predictions (Se = 0.95) is used as criterion

FP+ TN to measure prediction performance. This measure will be

By varying the decision threshold used to map (Eq 1) ontoeferred to as FN5%. For the train-test split of the data set




the m-fold cross-validation proceduren(CV) is applied. the best overall performance. For acceptor site prediction
In this setting the data is divided inte subsets of equal using the feature setskCTable 1 shows optimal context

size while preserving the class distribution. A model issizes to be larger in the exon part of the local context
inducedm times, each time leaving out one of the subsetsubsequence. For donor prediction this is only the case
from training that is then used to compute the performancéor the human data sample. Although the differences are

measures as describe above. not necessarily species-dependent (other factors could be
the sub-sampling of data points or the level of noise in the
RESULTS AND DISCUSSION data) optimizing the context lengths for each genome (or

Parameter Optimization new dataset) is shown_ to be c;ru_cial for the induction of
L . accurate species-specific prediction models. The default
The optimization of the parameters that are assomategndq valuesp = ¢ = 50 seems to perform better than
with each of the representations is considered to be ap _ q = 100.
important part in the computation of the SpliceMachine rrom Table 1 the optimal{g,C)) combination for each
models. These parameters are the d0S{Eq 2) used f the feature sets can be obtained (the row in bold). If
for training the LSVM, the length of the local context {he feature sets represent different types of discriminative
subsequencép, q) for each of the feature sets as well jnformation, then the merging of feature sets (using more
as the optimal merging of feature sets in terms Ofinan one feature set to represent a candidate splice site

classification performance. , by concatenating the features) should increase splice site
_':1‘23r _tﬁe parameter40 we consider the values prediction performance. But merging the feature sets will
27%2,...,1,...,2°. The context lengthy and jncrease the information redundancy that could, in turn,

q can both take values if20,40,60,80,10p For each gecrease prediction performance (Kohawal, 1997). To
feature set the FNS% ratio is computed usiftiCV for - jnyestigate this, a larger data sub-sample was randomly
all possible combinationsp(g,C). Although the LSVM  extracted from the full data sets (B1 and B2) that contains

induces a classifier relatively quick a smaller data sefp50 actual and 50,000 pseudo sites. Feature sets are
needs to be randomly selected from the full data set tgherged as follows:

make the model-based optimization procedure practical.

For bothArabidopsisand human we used a sub-sampleerges,_5: all feature sets P1, P2, P3, C3, C4, C5, C6
that contains 1000 actual and 10000 pseudo sites. F@ind RF using = ¢ = 50.

each feature set thep,g) values for which FN5% is  yerges)_so_cves:: feature sets P1, P2, P3, Cbest and RF
maximal (first row, in bold) and thep(q) values for which  ysingp = ¢ = 50. Cbest is the best performirigfrom
FN5% is minimal (last row) are plotted in Table 1. To a|| Ck in Table 1. This is C4 for all data sets.

show that choosing large context sizgs ¢ = 100)  merge,;o_100: all feature sets P1, P2, P3, C3, C4, C5, C6
does not always lead to the best prediction performanceynd RF using = ¢ = 100.

the results fop = ¢ = 100 are plotted in the second row mergeioo—100—crest: fEAtUre sets P1, P2, P3, Cbest and
for each feature set. The third row shows performancgRf usingp = ¢ = 100. Cbest is the best performirig
for p = ¢ = 50, a typical context size used in splice site from all Ck in Table 1. This is C4 for all data sets.
prediction literature. In some cases the optimal value foknerge,,; ., all feature sets P1, P2, P3, C3, C4, C5, C6
p or ¢ was at the border of the search sp&ee100). In and RF using the optimal values foandq from Table 1.
these situations the search space for the context size thaterge i1 cnesi: feature sets P1, P2, P3, Cbest and
was at the border was increased by 20 positions until N®F using the optimal values fqr and ¢ from Table 1.
further improvement was observed. For all feature set€bpest is the best performing from all Ck in Table 1.
the optimization ofp andg shows a significant increase in This is C4 for all data sets.
10CV prediction performance for most data sets. ET Jeopt—opt—tree: AN OPtimal merging of the feature sets
Table 1 also shows that the influence of context sizéd1, P2, P3, C3, C4, C5, C6 and RF obtained by best-first
optimization is more pronounced in the case of thesearch (explained further) using the optimal valuespfor
positional invariant feature setskGind RF. For instance andq from Table 1.
for B2hum acceptor site prediction Table 1 shows that
optimizing the context size increas@®CV prediction  The last method of merging feature setsrge,p:—opt—tree
performance from 0.21p(= ¢ = 50)t00.44 p = 20, =  searches for the best performing feature set combination.
100). These large differences in FN5% performance mak&his should limit the negative effect of information
sense because the value of a feature in these positionadundancy in the representation. The method is a top-
invariant feature sets depends strongly pnand g,  down best-first search procedure that starts from the best
while for P1, P2 and P3 this is not the case. For theperforming individual feature set and iteratively adds a
compositional feature sets, C4 (words of length 4) show$eature set based on how this merging performs. In a first




Table 2. Summary of best-first procedure to merge feature sets. For each data set the ordering of the feature sets represents the order in which
they were selected during the best-first search procedure. Next to each feature set (between brackets) there is the FN5% ratio obtained using a
merging of the feature sets up to the ratio. The feature sets in bold represent the optimal merging of feature sets.ei5@e,for opt—tree-

For B1 donors this optimal merging contains the feature sets P1, P2, P3, C3 and C5. This combined feature set obtains a 0.8 FN5% ratio for

the 10CV procedure.

| Data | Optimal merging |

B1 donors P1(0.70) C5(0.75) P2(0.78) C3(0.79) P3 (0.8Q) (0.79) RF (0.79) C6 (0.76
B1 acceptors P1(0.57) C3(0.63) C5(0.67) P3(0.68) C4(0.68) P2 (0.6RF (0.68) C6 (0.66)
B2hum donors | P2 (0.56) C6 (0.61) P1(0.73) C3(0.73) P3(0.7RF (0.72) C5 (0.70) C4 (0.68
B2hum acceptors P1(0.44) C4(0.58) C6 (0.61) P2 (0.65) RF (0.66)3 (0.66) C3 (0.66) C5 (0.66

iteration the best feature set is merged with each of P2fable 3. Comparison of different feature set merging strategies. For

ch merging strategy the Table shows the FN5% ratio obtained
P3, C.3’ C4, C5, C6 and RF. For each new f.eature S.et.(trﬁ’aing the 10CV procedure on a set of 1250 actual and 50,000 pseudo
merging of feature sets) the cost parameter is re-opt|m|ze§€

on the same sub-sample and the safi€V procedure lce sites.

used to compute the FN5% value in Table 1. The highest

FN5% value is selected and again merged with the sets | Arabidopsis(B1) | humans (B2hum) |
that are left. The procedure is repeated until there ar

no more sets to merge. Table 2 summarizes the merging | donors | acceptors| donors | acceptors|
process for each of the data sets. Both the order in which mergeso—so 0.34 027 0.36 0.25
feature sets are added and the associated performance arg., ... . . 034 0.26 031 023
shown. merge100—100 0.38 0.27 0.36 0.32

Although most of the discriminative information is | mergeioo—100—cvest | 0.40 0.30 0.31 0.27
extracted using the positional information feature set P1 €7 9€opt—opt 039 | 082 | 0451 039
(P2 for human donor sites), the compositional feature "< J¢pt—opt=Cbest 8'39 0.30 | 0371 033

L . T mergeopt—opt—tree 43 0.33 0.47 0.44
sets allow the SVM to significantly increase prediction
performance. The coding potential feature set RF seems
not to add much more discriminative information. Table 2
also shows that the information redundancy between
feature sets decreases prediction performance and a searelsults of a previous benchmark study in Pasty al.
for the optimal merging of feature sets, as suggested in thigl999) were copied into Table 4. These results were
manuscript, seems justified. presented at different Se levels that can typically be set

Table 3 presents the FN5% results of tH@CV  using an option in the system. AraSet contains 12 non-
evaluation procedure on the larger data sets of 1250anonical donor (not GT) and 2 non-canonical acceptor
actual and 50,000 pseudo splice sites. It shows that th@got AG) sites that are missed by most systems, including
mergeop—opt—tree Method consistently outperforms SpliceMachine. This explains why there is no Sp value
the other merging strategies. As a second choice, thior Se equal to 1. Table 4 shows how SpliceMachine
mergeqp—opr Method shows good results as well andoutperforms all other systems at all Se levels. At the 91%
does not require the best-first search for the optimaBe level, the Sp rate increased from 47% to 61% for

merging of feature sets. donor prediction compared to NetGene2, which was the
o next best performing system at this Se level. For acceptor
Prediction Performance sites the Sp rate increased from 40% to 58% compared to

The B1 donor and acceptor prediction models used ifNetGene2 at the 85% Se level. For donor site prediction
SpliceMachine have been induced from the actual anthis means that the number of false postive predictions
pseudo splice sites in the 148%abidopsigyenes set using decreased by 43%, for acceptor sites this is 52%.

the optimal parameter settingg, (¢ and C') shown in In B2 an evaluation against the system GeneSplicer
Table 1 and the feature set mergings presented in Table &as computed usingCV on the set of 1322\rabidopsis

The obtained donor and acceptor model were then used tgenes and the 1115 human genes. The Se and FP% values
annotate the AraSet. To compare our results to the systemeported in Perteat al. (2001) are copied into Table 5 next
NetPlantGene, NetGene2, SPL and SplicePredictor, th® the results obtained using SpliceMachine. Again we




Table 4. SpliceMachine prediction performance on the sefrfbidopsisgenes in AraSet. Prediction performance is measured in terms of
sensitivity (Se) and specificity (Sp). The Se and Sp ratio’s of the other prediction systems are copied fretraP&499). Each line shows

the name of the system, the Se and Sp results of this system on AraSet and (in the SP SpliceMachine column) the Sp value obtained by
SpliceMachine at the same Se ratio.

| | AraSet donors | AraSet acceptors |

| | Se | Sp | SpSpliceMachineg] Se | Sp | Sp SpliceMachine|

NetPlantGene 0.91 | 0.33 0.61 0.89 | 0.19 0.48
NetGene2 all sites 0.95| 0.31 0.49 0.85 | 0.40 0.58
NetGene2 scorg 0.90 0.91 | 0.47 0.61 0.67 | 0.59 0.75
NetGene2 scorgz 0.95 0.81 | 0.57 0.71 0.49 | 0.71 0.85
NetGene2 scorgs 0.98 0.61 | 0.65 0.83 0.23 | 0.77 0.91
NetGene2 score =1 0.55 | 0.69 0.85 0.22 | 0.76 0.92
NetGene2H-all scores 0.51 | 0.61 0.85 0.22 | 0.76 0.92
SPL 0.84 | 0.30 0.70 0.76 | 0.23 0.70
SplicePredictor 100% learning set 0.96 | 0.07 0.46 1.00 | 0.04 -

SplicePredictor/tau maximal/star-value 140.40 | 0.68 0.87 0.41 | 0.68 0.86
SplicePredictor/tau maximal/star-value 110.63 | 0.60 0.82 0.57 | 0.54 0.81
SplicePredictor/tau maximal/star-value 8 0.73 | 0.47 0.77 0.63 | 0.44 0.78
SplicePredictor/tau maximal/star-value 5 0.83 | 0.35 0.71 0.68 | 0.36 0.75

Table 5.Prediction performance of GeneSplicer, SpliceMachine, Maxent and Winnow on the B2ara and B2hum data set described in the text.
The Sp ratio’s obtained using a 5CV procedure are shown for each Se ratio. The results for GeneSplicer are copied fretralR@064),

the results for Winnow from Chuargg al. (2001). The result for Maxent were obtained by submitting the B2ara and B2hum data sets to the
scoresplice webserver

| | | donors acceptors |

| | se | FP% |

| | | GeneSplicer| SpliceMachine| Maxent | Winnow | GeneSplicer| SpliceMachine| Maxent | Winnow |

B2ath 0.97 0.047 0.032 - - 0.117 0.047 - -
0.95 0.028 0.021 - - 0.049 0.027 - -
0.93 0.019 0.015 - - 0.033 0.018 - -
0.92 0.017 0.013 - - 0.029 0.016 - -
0.90 0.014 0.010 - - 0.024 0.012 - -
0.85 0.009 0.006 - - 0.016 0.008 - -
0.80 0.006 0.004 - - 0.011 0.005 - -
0.70 0.004 0.002 - - 0.007 0.003 - -

B2hum | 0.97 0.147 0.032 0.101 0.041 0.093 0.048 0.141 0.078
0.95 0.064 0.022 0.075 0.030 0.058 0.029 0.107 0.051
0.93 0.048 0.016 0.059 0.022 0.047 0.021 0.082 0.038
0.92 0.041 0.014 0.053 0.020 0.043 0.019 0.074 0.034
0.90 0.035 0.011 0.045 0.016 0.037 0.015 0.061 0.027
0.85 0.025 0.006 0.033 0.011 0.026 0.009 0.044 0.017
0.80 0.018 0.004 0.025 0.008 0.019 0.006 0.036 0.012
0.70 0.007 0.002 0.016 0.003 0.008 0.003 0.022 0.004

observe a significant increase in prediction performanceonor sites and from 5.8% to 2.9% for human acceptor
for both donor and acceptor datasets. At a 95% Se ratasjtes. ForArabidopsisthe FP% was decreased from 2.8%
the FP% rate decreased from 6.4% to 2.2% for humato 2.1% for donor and from 4.9% to 2.7% for acceptor




site prediction, both at the 95% Se level. This again is &astelo,R. and Guigo,R. (2004) Splice site identification by idIBNs,
significant reduction in false positive predictions. Bioinformatics 20, 169-176.

The B2hum data set was also used in (Chuang Chuang,J.S. and Roth,D. (2001) Splice site prediction using a sparse
al., 2001) to evaluate a Winnow-based (Roth, 1998) network of winnows,Technical report, University of lIllinois

. - L. .~ .7  Urbana-Champaign
splice site prediction system that uses a somewhat S|m|IaE5 . . .

. ) ! . h,D. lakrishnan,V. (2001) Modeling DNA spl

approach as SpliceMachine, but without the context size ashD. and Gopalakrishnan,V. (2001) Modeling spice

L C regions by learning Bayesian networRechnical report, Center
optimization. These results were also copied in Table 5. ¢, giomedical Informatics, University of Pittsburgh

Although SpliceMachine only performs slightly better Degroeve,S., De Baets,B., Van de Peer,Y. and BRguz(2002)
than Winnow for donor site prediction, the differences are Feature subset selection for splice site predic@informatics
again significant for acceptor site prediction. 18, 75-82.

Recent publications on computational splice site recogFlorea,L., Hartzell,G., Zhang,Z., Rubin,G.M. and Miller,W. (1998)
nition focus on the dependencies between nucleotide po- A computer program for aligning a cDNA sequence with a
sitions in close proximity to the GT or AG dinucleotide in  9enomic DNA sequenc&enome Ress, 967-974.
human splice sites (Yeo, 2003; Casteloal, 2004). The HebsgaardM.S., Korming,G.P.,  TolstrupN.,  Engelbrecht,J.,
context sizes used in these methods are smpalh@q are Rouz,P. and Brunak,S. (1996) Splice site prediction in Ara-
smaller than 20). To compare this to our large context ap- _b|dop5|s_ thaliana DNA by combining local and global sequence

. information,Nuc. Acids Res24, 3439-3452.

proach we used thecoresplice webserveto an_HOtate the Kohavi,R. and John,G. (1997) Wrappers for feature subset selection,
B2hum data set. Table 5 shows the results inNfaxent Artificial Intelligence 97, 273-324.
column. As the small context size models basically onlyLim,L.P. and Burge,C.B. (2001) A computational analysis of
capture the position dependent information, their perfor- sequence features involved in recognition of short intrémse.
mance is clearly worse, especially for acceptor prediction. Natl. Acad. Sci. US98, 11193-11198.

Mathe,C., Sagot,F.M., Schiex, T. and R&R. (2002) Current meth-
CONCLUSION ods of gene prediction, their strengths and weaknegses,

. . . . . Acids Res.30, 4103-4117.

SpliceMachine recognizes splice sites based on the p@ytel,A. and Steitz,L. (2003) Splicing double: insights from the
sitional, compositional and codon bias information that second spliceosomdlat. Rev. Mol. Cell Big 4, 960-970.
is extracted from a large local context around each canPatterson,D.J., Yasuhara,K. and Ruzzo,W.L. (2002) Pre-mRNA
didate splice site. At the heart of SpliceMachine lies an secondary structure prediction aids splice site predicfuog.
LSVM model that is fast in both computing the classifier of Pac. Symp. on Biocomputing23-234.
as well as in classifying candidate sites. We have showfavy.N., Rombauts,S., &hais,P., Mat#,C., Ramana,D.V.V,
that this approach is performs significantly better than cur- L€70y.P. and RowzP. (1999) Evaluation of gene prediction
rent state-of-the-art tools used by researchers in the field of SCware using a genomic data set: application to Arabidopsis

Molecular Biology. The approach also allows for easy in- thaliana sequenceBjoinformatics15, 887-899.
9y. PP Y Pertea,M., Lin,X. and Salzberg,S.L. (2001) GeneSplicer: a new

corporation of other typeS_Of information such as_th_e pres- computational method for splice site predictibhyc. Acids Res.
ence or absence of certain structural characteristics (Pat- 9 1185-1190.

tersonet al, 2002) or a branch point motif (Tolstrigi al,  Reese,G.M., Eeckman,H.F., Kulp,D. and Haussler,D. (1997) Im-
1997). The use of binary features facilitates the interpreta- proved Splice Site Detection in Genie Comp. Biol4, 311-323.
tion of the discriminant function and future work includes Roth,D. (1998) Learning to resolve natural language ambiguities: A
the application of advanced feature subset selection meth- unified approachProc. of the Nat. Conf. of A,1806-813.

ods to separate the relevant from the irrelevant feature$onnenburg,S., Ratsch,G., Jagota,A. and Muller,R.K. (2002) New
By making the software trainable researchers can evaluate Methods for splice site recognitioRroc. of In ICANN'02

SpliceMachine against other methods on their data. Sun,Y.F., Fan,D.X. and Li,Y.D. (2002) Identifying splicing sites in
eukaryotic RNA: support vector machine approaCmmp. in

Bio. and Med.33, 17-29.
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