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ABSTRACT
Motivation: In this age of complete genome sequencing,
finding the location and structure of genes is crucial for
further molecular research. The accurate prediction of
intron boundaries largely facilitates the correct prediction
of gene structure in nuclear genomes. Many tools for
localizing these boundaries on DNA sequences have been
developed and are available to researchers through the
internet. Nevertheless, these tools still make many false
positive predictions.
Results: This manuscript presents a novel publicly
available splice site prediction tool named SpliceMachine
that (i) shows state-of-the-art prediction performance on
Arabidopsis thalianaand human sequences, (ii) performs a
computationally fast annotation, and (iii) can be trained by
the user on its own data.
Availability: Results, figures and software are available
from http://bioinformatics.psb.ugent.be/supplementary data/

Contact: Sven.Degroeve,Yves.Vandepeer@psb.ugent.be

INTRODUCTION
An increasingly important task in bioinformatics is to
analyse genome sequences for the location and structure
of their genes, often referred to as gene prediction or
gene finding. For most eukaryotic nuclear genomes, a
gene usually consists of a set of coding fragments, known
as exons, which are separated by non-coding intervening
fragments, known as introns. The boundaries of these
introns are called the splice sites, the 5’ boundary is
termed the donor site and the 3’ boundary is termed the
acceptor site.

Current gene prediction systems tend to have a modular
structure, combining the outputs of several components
that are each specialized in recognizing specific structural
elements of a gene (Mathé et al., 2002). An important
component is the splice site predictor. Computationally

speaking, predicting the location of a splice site can be
seen as a classification task. Although many eukaryotic
organisms contain two kinds of spliceosomes splicing
two types of introns, U2-type and U12-type, the vast
majority of introns are U2-type (Patelet al., 2003)
where the donor site practically always contains the GT
dinucleotide at the intron boundary, GC being observed in
less than 1% of the cases. This donor site is recognized by
the U1 snRNA of the spliceosome through base-pairing
with an ACUUACCU motif, and should ideally have
the AG/GTAAGT pattern. Nevertheless, the base-pairing
recognition is rather loose, i.e. the donor site pattern is less
clear and tolerates many replacements in the motif, except
for the border GT. The acceptor is observed to always
contain the AG dinucleotide at the intron border with an
even less clear pattern surrounding the dinucleotide. As
such, all GT (resp. AG) dinucleotides on the DNA are
defined as candidate donor (resp. acceptor) sites and need
to be classified as either an actual (true) site or a pseudo
(false) site.

Through the fast pace of the sequencing of genes and
their cognate transcripts, the number of experimentally
identified eukaryotic donor and acceptor sites has grown
extensively over the last decade. The accumulation of
publicly available biological data has boosted genomic
research in the field of Machine Learning and the predic-
tion of splice sites became again a challenge (Caiet al.,
2000; Dashet al., 2001; Yeo, 2003; Casteloet al., 2004).
Recent approaches based on discriminant functions such
as Winnow (Chuanget al., 2001) or the Support Vector
Machine (SVM) (Sonnenburget al., 2002; Degroeveet
al., 2002; Sunet al., 2003) show significant improvements
in prediction performance compared to previously used
systems such as NetPlantGene (Hebsgaardet al., 1996),
NetGene2 (Tolstrupet al., 1997), SPL, SplicePredic-
tor (Brendelet al., 1999) and GeneSplicer (Perteaet al.,
2001). Nevertheless, these approaches have not yet been
implemented as a tool that can be used by researchers for
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annotating genome sequences.
This manuscript presents a novel publicly available

splice site prediction tool named SpliceMachine that
(i) shows state-of-the-art prediction performance on
Arabidopsis thalianaand human sequences, (ii) can
be trained by the user on its own data, (iii) performs
a computationally fast annotation and (iv) is intuitive
and can provide biological knowledge extracted from
the data. Our approach employs Linear Support Vector
Machines (LSVM) to compute a linear classification
boundary between actual and pseudo splice sites. For
this, a candidate splice site is represented as a feature
vector, each feature containing some information about
the candidate splice site and its context in the sequence.
This context is defined as the subsequence that starts at
p nucleotide positions upstream the candidate splice site
and ends atq positions downstream the candidate splice
site.

We define features sets in order to capture the positional
nucleotide preferences observed in close proximity to
the donor and acceptor site, the preference for certain
oligomers in the neighborhood of splice sites (Limet al.,
2001), and the codon bias upstream donor and downstream
acceptor sites. We propose a model-based procedure for
optimizing the parametersp and q for each of these
feature sets as well as the cost parameterC of the LSVM
(described further) and show that this leads to a significant
boost in the prediction performance of the system.

METHODS AND DATA
Local Context Representations
This section describes the feature vector representations
of candidate splice sites. The first type of features refers to
positional informationand should capture the consensus
motif as well as the correlations that exists between
nucleotide positions in close proximity of the splice site
(see introduction). The second type of features refers
to compositional informationand should capture the
presence or absence of discriminative oligomers found in
the neighborhood of splice sites. The existence of these
oligomers was observed for instance by Limet al. (2001)
and used as discriminative information in SplicePredictor.
A third type of information is the codon bias that exists
upstream most donor and downstream most acceptor
sites. This codon bias is also found downstream pseudo
donor sites or upstream pseudo acceptor sites that are
extracted from the coding part of a gene. This type of
information is termedcoding potentialand it is similar to
the compositional information but split up in each of the
three possible reading frames as explained further.

All of the features are extracted from a local context
subsequence surrounding the candidate splice site. This
local context consists ofp adjacent nucleotides upstream

and q adjacent nucleotides downstream the GT or AG
dinucleotide. Throughout this paper, the following local
context (p = 6, q = 7) around a candidate donor site is
used to exemplify the terminology introduced:

a c t t c g G T a g c c t c c
1 2 3 4 5 6 7 8 9 10 11 12 13

Positional Information
The information extracted is the presence or absence
of a nucleotide at a position in the local context subse-
quence. We will refer to this feature set as P1. Letfs,v

be a binary feature from P1 that has value one if the
nucleotide at positions in the local context sequence is
v with v ∈ {a, c, g, t}. For the candidate donor site (see
example) the following features in P1 have a value equal
to one (all other features have value zero):
f1,a, f2,c, f3,t, f4,t, f5,c, f6,g, f7,a, f8,g, f9,c, f10,c, f11,t,
f12,c andf13,c.

To account for the correlations that exist between nu-
cleotide positions certain types of concatenations are
created using the features in P1. Feature sets P2 and P3
extract the presence or absence of a di- or tri-nucleotide
at a position in the local context subsequence. Letv be a
di-nucleotide then for the feature set P2 (similarly for the
feature set P3) the following features have a value equal
to one:
f1,ac, f2,ct, f3,tt, f4,tc, f5,cg, f7,ag, f8,gc, f9,cc, f10,ct,
f11,tc, f12,cc.

Compositional Information
The information extracted is the presence or absence of
individual tri-, tetra-, penta- or hexa-mers in the local
upstream context and in the local downstream context
separately. We will refer to these feature sets as Ck where
k is the length of the oligomer (k-mer) that is considered.
Each feature set Ck consists of4k featuresfup,x that
indicate the presence or absence of ak-mer x in the
upstream context plus4k featuresfdown,x, that indicate
the presence or absence of ak-merx in the downstream
context. For the candidate donor example the following
compositional trimer features (C3) have a value equal to
one:
fup,act, fup,ctt, fup,ttc, fup,tcg, fdown,agc, fdown,gcc,
fdown,cct, fdown,ctc andfdown,tcc.

Coding Potential
The information extracted is the presence or absence of
codons in each of the three possible reading frames of
both local upstream and downstream context separately.
Let us assume that the complete context of our candidate
site is a coding sequence, i.e. the candidate site would
be a pseudo splice site. We can then write this context
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sequence in each of the three possible reading frames.
For each of the three reading framesR (R = 1, 2, 3) 64
featuresfR,up,x are computed for the upstream context
plus 64 featuresfR,down,x for the downstream context.
A featurefR,up,x has value one if the upstream context
in reading frameR contains the trimer or codonx. This
totals 128 × 3 = 384 features in a set we will denote
RF (for Reading Frame). For the candidate donor site
presented above the following features in RF have a value
equal to one:
f1,up,act, f1,up,tcg, f2,up,ctt, f3,up,ttc, f1,down,agc,
f1,down,ctc, f2,down,gcc, f2,down,tcc andf3,down,cct.

The definition of which reading frame is frameR is
irrelevant as long as it is the same for all candidate sites.

Linear Support Vector Machines
The Support Vector Machine (Boseret al., 1992; Vapnik,
1995) is a data-driven method for solving two-class
classification tasks. The LSVM separates the two classes
in T with a hyperplane in the feature space such that:

(a) the largest possible fraction of instances of the same
class are on the same side of the hyperplane, and

(b) the distance of either class from the hyperplane is
maximal.

The prediction of an LSVM for an unseen instancez is
1 (classified as a positive instance) or−1 (classified as a
negative instance), given by the decision function

pred(z) = t(wz + b) . (1)

with t(x) a function that maps allx greater or equal to a
certain threshold to 1 and allx smaller than that threshold
to -1. The hyperplane is computed by maximizing a vector
of Lagrange multipliersα in

W (α) =
l∑

i=1

αi −
1
2

l∑
i,j=1

αi αj yi yj xixj,

constrained to:0 ≤ αi ≤ C and
l∑

i=1

αi yi = 0 , (2)

whereC is a parameter set by the user to regulate the effect
of outliers and noise, i.e. it defines the meaning of the word
largest in (a).
For the LSVM the relation betweenw andα is:

w =
l∑

i=1

αi xi yi .

Data
In a first benchmark, we compiled our ownArabidopsis
thalianasplice site data set and carefully checked whether
no genes were included that were also in the test set
called AraSet (Pavyet al., 1999). AraSet is a set of 168
Arabidopsis thalianagenes which was used to compare
several splice site prediction tools. By evaluating our
SpliceMachine on this set we can compare our results to
those published in Pavyet al. (1999). Our training set
was generated by aligning mRNAs (using SIM4; Florea
et al. (1998)), obtained from the public EMBL database
(June 5th 2000), with the BAC sequences that were used
for the Arabidopsischromosome assembly. Redundant
genes were excluded by counting the neighbors of every
gene (two genes are neighbors when they show more
than 80% identity at the nucleotide level), and discarding
the gene with the largest number of neighbors. This
proces is repeated until no genes with neighbors remain.
Of the 1812 genes obtained from EMBL (Aubourget
al., unpublished), 1495 genes were kept after removing
redundant ones. From each gene only these introns
confirming the GT-AG consensus were used to construct
the set of actual splice sites. The pseudo donor sites
were, for all genes, defined as all GT dinucleotides that
are located between 300 nucleotide positions upstream of
the first donor and 300 nucleotide positions downstream
of the last acceptor in that gene and that are not donor
sites. The pseudo acceptor sites are defined as all AG
dinucleotides within the same range and that are not
acceptor sites. A sub-sample of this dataset will be used
for optimizing the parameters forArabidopsis. The full
dataset was used to induce theArabidopsismodels in
SpliceMachine. Training on this set and testing on AraSet
will be refered to as benchmark B1.

In a second benchmark we used the 1323Arabidopsis
genes and the 1115 human genes that were used to train
and evaluate the GeneSplicer system in Perteaet al.
(2001). A sub-sample of the human dataset was used for
optimizing the parameters for human gene annotation.
The full human dataset was used to induce the final
human models in SpliceMachine. Training and testing on
these sets will be referred to as benchmark B2ath for
Arabidopsisand benchmark B2hum for humans.

Performance measures
Several measures have been used to evaluate prediction
performance. In B1 the authors used sensitivity (Se) and
specificity (Sp) rate defined as

Se=
TP

TP+ FN
and Sp=

TP

TP+ FP
,

where TP, FP and FN are the number of true positives,
false positives and false negatives, respectively. The
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Table 1. Optimal context sizes (p,q) for the different feature sets P1-P3 (positional), C3-C6 (compositional), and RF (coding potential) for
bothArabidopsisand human sequences. The lines in bold represent the optimal values for (p,q) obtained by the model-based optimization
procedure. For each feature set the last line shows the (p,q) values with worst performance. The second and the third row are baselines. See
text for more details.

Arabidopsis(B1) humans (B2hum)

donors acceptors donors acceptors

p q FN5% p q FN5% p q FN5% p q FN5%

P1 60 120 0.70 80 80 0.57 20 20 0.52 60 60 0.44
100 100 0.66 100 100 0.55 100 100 0.46 100 100 0.38
50 50 0.68 50 50 0.49 50 50 0.49 50 50 0.44
20 20 0.54 20 100 0.42 20 100 0.45 100 100 0.39

P2 40 120 0.67 80 60 0.52 20 20 0.56 20 20 0.44
100 100 0.61 100 100 0.42 100 100 0.43 100 100 0.35
50 50 0.65 50 50 0.47 50 50 0.49 50 50 0.44
100 20 0.49 20 80 0.41 20 100 0.42 100 20 0.34

P3 40 80 0.51 80 60 0.39 20 20 0.47 20 20 0.37
100 100 0.47 100 100 0.32 100 100 0.36 100 100 0.35
50 50 0.48 50 50 0.38 50 50 0.44 50 50 0.34
80 40 0.43 20 100 0.26 20 80 0.36 80 20 0.29

C3 20 80 0.19 20 60 0.33 80 20 0.16 20 100 0.40
100 100 0.15 100 100 0.16 100 100 0.12 100 100 0.12
50 50 0.18 50 50 0.24 50 50 0.13 50 50 0.19
100 20 0.15 100 20 0.14 20 100 0.11 100 20 0.11

C4 80 80 0.24 20 80 0.34 80 20 0.21 20 100 0.44
100 100 0.21 100 100 0.22 100 100 0.16 100 100 0.18
50 50 0.24 50 50 0.28 50 50 0.17 50 50 0.24
60 20 0.17 100 40 0.22 20 80 0.14 100 20 0.13

C5 80 80 0.24 40 60 0.29 80 20 0.19 20 80 0.42
100 100 0.21 100 100 0.22 100 100 0.17 100 100 0.20
50 50 0.21 50 50 0.26 50 50 0.16 50 50 0.24
20 40 0.16 100 20 0.19 20 100 0.13 100 20 0.13

C6 80 80 0.20 80 80 0.23 100 100 0.17 20 140 0.35
100 100 0.18 100 100 0.19 100 100 0.17 100 100 0.18
50 50 0.19 50 50 0.22 50 50 0.15 50 50 0.21
20 20 0.11 100 20 0.16 20 60 0.11 100 20 0.12

RF 20 60 0.24 20 80 0.36 20 20 0.25 20 100 0.44
100 100 0.20 100 100 0.22 100 100 0.15 100 100 0.15
50 50 0.24 50 50 0.29 50 50 0.17 50 50 0.21
100 20 0.18 100 20 0.20 20 100 0.14 100 20 0.12

performance of GeneSplicer in B2ath and B2hum was
measured in terms of Se and false positive rate defined as

FP%=
FP

FP+ TN
.

By varying the decision threshold used to map (Eq 1) onto

a class, Sp and FP% ratios can be computed for all Se
levels. For the model-based procedure used to optimize
the parametersp, q andC (see further) the Sp ratio at 5%
false negative predictions (Se = 0.95) is used as criterion
to measure prediction performance. This measure will be
referred to as FN5%. For the train-test split of the data set
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them-fold cross-validation procedure (mCV) is applied.
In this setting the data is divided intom subsets of equal
size while preserving the class distribution. A model is
inducedm times, each time leaving out one of the subsets
from training that is then used to compute the performance
measures as describe above.

RESULTS AND DISCUSSION
Parameter Optimization
The optimization of the parameters that are associated
with each of the representations is considered to be an
important part in the computation of the SpliceMachine
models. These parameters are the costC (Eq 2) used
for training the LSVM, the length of the local context
subsequence(p, q) for each of the feature sets as well
as the optimal merging of feature sets in terms of
classification performance.

For the parameterC we consider the values
2−12, 2−11, . . . , 1, . . . , 24. The context lengthsp and
q can both take values in{20,40,60,80,100}. For each
feature set the FN5% ratio is computed using10CV for
all possible combinations (p,q,C). Although the LSVM
induces a classifier relatively quick a smaller data set
needs to be randomly selected from the full data set to
make the model-based optimization procedure practical.
For bothArabidopsisand human we used a sub-sample
that contains 1000 actual and 10000 pseudo sites. For
each feature set the (p,q) values for which FN5% is
maximal (first row, in bold) and the (p,q) values for which
FN5% is minimal (last row) are plotted in Table 1. To
show that choosing large context sizes (p = q = 100)
does not always lead to the best prediction performance,
the results forp = q = 100 are plotted in the second row
for each feature set. The third row shows performance
for p = q = 50, a typical context size used in splice site
prediction literature. In some cases the optimal value for
p or q was at the border of the search space(= 100). In
these situations the search space for the context size that
was at the border was increased by 20 positions until no
further improvement was observed. For all feature sets
the optimization ofp andq shows a significant increase in
10CV prediction performance for most data sets.

Table 1 also shows that the influence of context size
optimization is more pronounced in the case of the
positional invariant feature sets Ck and RF. For instance
for B2hum acceptor site prediction Table 1 shows that
optimizing the context size increases10CV prediction
performance from 0.21 (p = q = 50) to 0.44 (p = 20,q =
100). These large differences in FN5% performance make
sense because the value of a feature in these positional
invariant feature sets depends strongly onp and q,
while for P1, P2 and P3 this is not the case. For the
compositional feature sets, C4 (words of length 4) shows

the best overall performance. For acceptor site prediction
using the feature sets Ck, Table 1 shows optimal context
sizes to be larger in the exon part of the local context
subsequence. For donor prediction this is only the case
for the human data sample. Although the differences are
not necessarily species-dependent (other factors could be
the sub-sampling of data points or the level of noise in the
data) optimizing the context lengths for each genome (or
new dataset) is shown to be crucial for the induction of
accurate species-specific prediction models. The defaultp
andq valuesp = q = 50 seems to perform better than
p = q = 100.

From Table 1 the optimal (p,q,C) combination for each
of the feature sets can be obtained (the row in bold). If
the feature sets represent different types of discriminative
information, then the merging of feature sets (using more
than one feature set to represent a candidate splice site
by concatenating the features) should increase splice site
prediction performance. But merging the feature sets will
increase the information redundancy that could, in turn,
decrease prediction performance (Kohaviet al., 1997). To
investigate this, a larger data sub-sample was randomly
extracted from the full data sets (B1 and B2) that contains
1250 actual and 50,000 pseudo sites. Feature sets are
merged as follows:

merge50−50: all feature sets P1, P2, P3, C3, C4, C5, C6
and RF usingp = q = 50.
merge50−50−Cbest: feature sets P1, P2, P3, Cbest and RF
usingp = q = 50. Cbest is the best performingk from
all Ck in Table 1. This is C4 for all data sets.
merge100−100: all feature sets P1, P2, P3, C3, C4, C5, C6
and RF usingp = q = 100.
merge100−100−Cbest: feature sets P1, P2, P3, Cbest and
RF usingp = q = 100. Cbest is the best performingk
from all Ck in Table 1. This is C4 for all data sets.
mergeopt−opt all feature sets P1, P2, P3, C3, C4, C5, C6
and RF using the optimal values forp andq from Table 1.
mergeopt−opt−Cbest: feature sets P1, P2, P3, Cbest and
RF using the optimal values forp and q from Table 1.
Cbest is the best performingk from all Ck in Table 1.
This is C4 for all data sets.
mergeopt−opt−tree: an optimal merging of the feature sets
P1, P2, P3, C3, C4, C5, C6 and RF obtained by best-first
search (explained further) using the optimal values forp
andq from Table 1.

The last method of merging feature setsmergeopt−opt−tree

searches for the best performing feature set combination.
This should limit the negative effect of information
redundancy in the representation. The method is a top-
down best-first search procedure that starts from the best
performing individual feature set and iteratively adds a
feature set based on how this merging performs. In a first
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Table 2.Summary of best-first procedure to merge feature sets. For each data set the ordering of the feature sets represents the order in which
they were selected during the best-first search procedure. Next to each feature set (between brackets) there is the FN5% ratio obtained using a
merging of the feature sets up to the ratio. The feature sets in bold represent the optimal merging of feature sets used formergeopt−opt−tree.
For B1 donors this optimal merging contains the feature sets P1, P2, P3, C3 and C5. This combined feature set obtains a 0.8 FN5% ratio for
the 10CV procedure.

Data Optimal merging

B1 donors P1 (0.70) C5 (0.75) P2 (0.78) C3 (0.79) P3 (0.80)C4 (0.79) RF (0.79) C6 (0.76)
B1 acceptors P1 (0.57) C3 (0.63) C5 (0.67) P3 (0.68) C4 (0.68) P2 (0.69)RF (0.68) C6 (0.66)
B2hum donors P2 (0.56) C6 (0.61) P1 (0.73) C3 (0.73) P3 (0.74)RF (0.72) C5 (0.70) C4 (0.68)
B2hum acceptors P1 (0.44) C4 (0.58) C6 (0.61) P2 (0.65) RF (0.66)P3 (0.66) C3 (0.66) C5 (0.66)

iteration the best feature set is merged with each of P2,
P3, C3, C4, C5, C6 and RF. For each new feature set (the
merging of feature sets) the cost parameter is re-optimized
on the same sub-sample and the same10CV procedure
used to compute the FN5% value in Table 1. The highest
FN5% value is selected and again merged with the sets
that are left. The procedure is repeated until there are
no more sets to merge. Table 2 summarizes the merging
process for each of the data sets. Both the order in which
feature sets are added and the associated performance are
shown.

Although most of the discriminative information is
extracted using the positional information feature set P1
(P2 for human donor sites), the compositional feature
sets allow the SVM to significantly increase prediction
performance. The coding potential feature set RF seems
not to add much more discriminative information. Table 2
also shows that the information redundancy between
feature sets decreases prediction performance and a search
for the optimal merging of feature sets, as suggested in this
manuscript, seems justified.

Table 3 presents the FN5% results of the10CV
evaluation procedure on the larger data sets of 1250
actual and 50,000 pseudo splice sites. It shows that the
mergeopt−opt−tree method consistently outperforms
the other merging strategies. As a second choice, the
mergeopt−opt method shows good results as well and
does not require the best-first search for the optimal
merging of feature sets.

Prediction Performance
The B1 donor and acceptor prediction models used in
SpliceMachine have been induced from the actual and
pseudo splice sites in the 1495Arabidopsisgenes set using
the optimal parameter settings (p, q and C) shown in
Table 1 and the feature set mergings presented in Table 2.
The obtained donor and acceptor model were then used to
annotate the AraSet. To compare our results to the systems
NetPlantGene, NetGene2, SPL and SplicePredictor, the

Table 3.Comparison of different feature set merging strategies. For
each merging strategy the Table shows the FN5% ratio obtained
using the 10CV procedure on a set of 1250 actual and 50,000 pseudo
splice sites.

Arabidopsis(B1) humans (B2hum)

donors acceptors donors acceptors

merge50−50 0.34 0.27 0.36 0.25
merge50−50−Cbest 0.34 0.26 0.31 0.23
merge100−100 0.38 0.27 0.36 0.32
merge100−100−Cbest 0.40 0.30 0.31 0.27
mergeopt−opt 0.39 0.32 0.45 0.39
mergeopt−opt−Cbest 0.39 0.30 0.37 0.33
mergeopt−opt−tree 0.43 0.33 0.47 0.44

results of a previous benchmark study in Pavyet al.
(1999) were copied into Table 4. These results were
presented at different Se levels that can typically be set
using an option in the system. AraSet contains 12 non-
canonical donor (not GT) and 2 non-canonical acceptor
(not AG) sites that are missed by most systems, including
SpliceMachine. This explains why there is no Sp value
for Se equal to 1. Table 4 shows how SpliceMachine
outperforms all other systems at all Se levels. At the 91%
Se level, the Sp rate increased from 47% to 61% for
donor prediction compared to NetGene2, which was the
next best performing system at this Se level. For acceptor
sites the Sp rate increased from 40% to 58% compared to
NetGene2 at the 85% Se level. For donor site prediction
this means that the number of false postive predictions
decreased by 43%, for acceptor sites this is 52%.

In B2 an evaluation against the system GeneSplicer
was computed using5CV on the set of 1323Arabidopsis
genes and the 1115 human genes. The Se and FP% values
reported in Perteaet al.(2001) are copied into Table 5 next
to the results obtained using SpliceMachine. Again we
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Table 4. SpliceMachine prediction performance on the set ofArabidopsisgenes in AraSet. Prediction performance is measured in terms of
sensitivity (Se) and specificity (Sp). The Se and Sp ratio’s of the other prediction systems are copied from Pavyet al.(1999). Each line shows
the name of the system, the Se and Sp results of this system on AraSet and (in the SP SpliceMachine column) the Sp value obtained by
SpliceMachine at the same Se ratio.

AraSet donors AraSet acceptors

Se Sp Sp SpliceMachine Se Sp Sp SpliceMachine

NetPlantGene 0.91 0.33 0.61 0.89 0.19 0.48
NetGene2 all sites 0.95 0.31 0.49 0.85 0.40 0.58
NetGene2 score≥ 0.90 0.91 0.47 0.61 0.67 0.59 0.75
NetGene2 score≥ 0.95 0.81 0.57 0.71 0.49 0.71 0.85
NetGene2 score≥ 0.98 0.61 0.65 0.83 0.23 0.77 0.91
NetGene2 score = 1 0.55 0.69 0.85 0.22 0.76 0.92
NetGene2H-all scores 0.51 0.61 0.85 0.22 0.76 0.92
SPL 0.84 0.30 0.70 0.76 0.23 0.70
SplicePredictor 100% learning set 0.96 0.07 0.46 1.00 0.04 –
SplicePredictor/tau maximal/star-value 140.40 0.68 0.87 0.41 0.68 0.86
SplicePredictor/tau maximal/star-value 110.63 0.60 0.82 0.57 0.54 0.81
SplicePredictor/tau maximal/star-value 8 0.73 0.47 0.77 0.63 0.44 0.78
SplicePredictor/tau maximal/star-value 5 0.83 0.35 0.71 0.68 0.36 0.75

Table 5.Prediction performance of GeneSplicer, SpliceMachine, Maxent and Winnow on the B2ara and B2hum data set described in the text.
The Sp ratio’s obtained using a 5CV procedure are shown for each Se ratio. The results for GeneSplicer are copied from Perteaet al. (2001),
the results for Winnow from Chuanget al. (2001). The result for Maxent were obtained by submitting the B2ara and B2hum data sets to the
scoresplice webserver.

donors acceptors

Se FP%

GeneSplicer SpliceMachine Maxent Winnow GeneSplicer SpliceMachine Maxent Winnow

B2ath 0.97 0.047 0.032 – – 0.117 0.047 – –
0.95 0.028 0.021 – – 0.049 0.027 – –
0.93 0.019 0.015 – – 0.033 0.018 – –
0.92 0.017 0.013 – – 0.029 0.016 – –
0.90 0.014 0.010 – – 0.024 0.012 – –
0.85 0.009 0.006 – – 0.016 0.008 – –
0.80 0.006 0.004 – – 0.011 0.005 – –
0.70 0.004 0.002 – – 0.007 0.003 – –

B2hum 0.97 0.147 0.032 0.101 0.041 0.093 0.048 0.141 0.078
0.95 0.064 0.022 0.075 0.030 0.058 0.029 0.107 0.051
0.93 0.048 0.016 0.059 0.022 0.047 0.021 0.082 0.038
0.92 0.041 0.014 0.053 0.020 0.043 0.019 0.074 0.034
0.90 0.035 0.011 0.045 0.016 0.037 0.015 0.061 0.027
0.85 0.025 0.006 0.033 0.011 0.026 0.009 0.044 0.017
0.80 0.018 0.004 0.025 0.008 0.019 0.006 0.036 0.012
0.70 0.007 0.002 0.016 0.003 0.008 0.003 0.022 0.004

observe a significant increase in prediction performance
for both donor and acceptor datasets. At a 95% Se rate,
the FP% rate decreased from 6.4% to 2.2% for human

donor sites and from 5.8% to 2.9% for human acceptor
sites. ForArabidopsisthe FP% was decreased from 2.8%
to 2.1% for donor and from 4.9% to 2.7% for acceptor
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site prediction, both at the 95% Se level. This again is a
significant reduction in false positive predictions.

The B2hum data set was also used in (Chuanget
al., 2001) to evaluate a Winnow-based (Roth, 1998)
splice site prediction system that uses a somewhat similar
approach as SpliceMachine, but without the context size
optimization. These results were also copied in Table 5.
Although SpliceMachine only performs slightly better
than Winnow for donor site prediction, the differences are
again significant for acceptor site prediction.

Recent publications on computational splice site recog-
nition focus on the dependencies between nucleotide po-
sitions in close proximity to the GT or AG dinucleotide in
human splice sites (Yeo, 2003; Casteloet al., 2004). The
context sizes used in these methods are small (p andq are
smaller than 20). To compare this to our large context ap-
proach we used thescoresplice webserver† to annotate the
B2hum data set. Table 5 shows the results in theMaxent
column. As the small context size models basically only
capture the position dependent information, their perfor-
mance is clearly worse, especially for acceptor prediction.

CONCLUSION
SpliceMachine recognizes splice sites based on the po-
sitional, compositional and codon bias information that
is extracted from a large local context around each can-
didate splice site. At the heart of SpliceMachine lies an
LSVM model that is fast in both computing the classifier
as well as in classifying candidate sites. We have shown
that this approach is performs significantly better than cur-
rent state-of-the-art tools used by researchers in the field of
Molecular Biology. The approach also allows for easy in-
corporation of other types of information such as the pres-
ence or absence of certain structural characteristics (Pat-
tersonet al., 2002) or a branch point motif (Tolstrupet al.,
1997). The use of binary features facilitates the interpreta-
tion of the discriminant function and future work includes
the application of advanced feature subset selection meth-
ods to separate the relevant from the irrelevant features.
By making the software trainable researchers can evaluate
SpliceMachine against other methods on their data.
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