Letter to the Editor

How Molecules Evolve in Eubacteria

Peter J. Lockhart,* Daniel Huson,† Uwe Maier,‡ Martin J. Fraunholz,‡ Yves Van de Peer,§
Adrian C. Barbrook,|| Christopher J. Howe,|| and Mike A. Steel¶

*Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand; †Program in Applied and
Computational Mathematics, Princeton University; ‡Fachbereich Biologie, Zellbiologie und Angewandte Botanik,
Philips-Universität Marburg, Marburg, Germany; §Fakultät Biologie, Evolutionsbiologie, Universität Konstanz, Konstanz,
Germany; ¶Department of Biochemistry and Cambridge Centre for Molecular Recognition, University of Cambridge,
Cambridge, England; ||Biocomputing, Computational Mathematics, Princeton University; ¤Fachbereich Biologie, Zellbiologie
und Angewandte Botanik, Philippe-Universität Marburg, Marburg, Germany; ¯Fakulta Èt Biologie, Evolutionsbiologie, Universita Èt
Konstanz, Konstanz, Germany; Department of Biochemistry and Cambridge Centre for Molecular Recognition, University of
Cambridge, Cambridge, England; ¶Fachbereich Biologie, Zellbiologie und Angewandte Botanik, Philippe-Universität
Marburg, Marburg, Germany; and ¶Fakulta Èt Biologie, Evolutionsbiologie, Universita Èt Konstanz, Konstanz,
Germany. © 2000 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038

A fundamental assumption in building evolutionary trees is that processes of change are constant across the
tree of life (Li and Gu 1996; Swoford et al. 1996). Despite this universal view, it is now clear that nucle-
otide compositions, amino acid compositions (e.g., Lan-
ave et al. 1984; Sueoka 1988; Hasegawa and Hashimoto
1993; Barbrook, Lockhart, and Howe 1998; Forster and
Hickey 1999; Lockhart et al. 1999), and, as we demon-
strate here for eubacterial sequences, the distribution
of sites in sequences that can accept substitutions may
change over time.

We investigated anciently diverged eubacterial se-
quen
ces using a simple linear dissimilarity measure
(dlcov) that was sensitive to the type of variable sequence
evolution predicted by a covarion/covariotide model (a
evolution in which the same sequence posi-
tions are free to substitute in some taxa but not in oth-
ers). Since tree-building properties of dlcov differ under
covarion/covariotide and rates-across-sites models, dlcov
allowed us to test for evidence of covarion/covariotide
evolution in eubacterial sequences. Our analyses dem-
onstrated that evolving distributions of variable sites in
molecules provide support for deep-branching patterns in
phylogenies reconstructed for eubacterial trees of life.
This finding joins growing evidence supporting the
covarion/covariotide evolution of sequences (Fitch and
Markowitz 1970; Lockhart et al. 1996, 1998; Phillippe
and Laurent 1998; Germot and Philippe 1999; Lopez,
Forerre, and Philippe 1999; Moreira, Guyader, and Phi-
lippe 1999; Philippe et al. 2000; Steel, Huson, and Lock-
hart 2000).

Given two monophyletic groups of taxa, the site
patterns found in an alignment of sequences can be
described in terms of five classes (Lockhart et al. 1998).
Two of these are used in calculating dlcov. Let N1 denote
the number of sites that are unvaried in the first group
but varied in the second group, and let N4 denote the
number of sites that are unvaried in the second
group but varied in the first. Let N denote the total number
of sites. Thus,

\[d_{lcov} = \frac{N_3 + N_4}{N} \]

is the proportion of sites varied in one group but not the
other. We describe exactly the expected value of dlcov
under two models—a model in which there is a dis-
tribution of rates across sites (RAS), and a covarion-style
model of the type described and analyzed recently by
Tuffley and Steel (1998). Under this latter model, the
following nonlinear dissimilarity measure converges
(with increasing sequence length) to an additive measure
that is proportional to the evolutionary distance between
the groups:

\[d_{cov} = -\log \left[N_5 - \frac{(N_3 + N_5)(N_4 + N_5)}{N} \right] \]

where N5 is the number of sites that are varied in both
groups.

At variable positions under both the RAS and the
covarion-style models, we assume that the underlying
mechanism of nucleotide substitution is described by the
Kimura 3ST model (or some submodel). The results are
expected to be similar under other models of nucleotide
substitution but somewhat more difficult to analyze.
Under either the RAS or the covarion-style model, the
expected value of \(N_k / N \) is \(p_k = p_{ij} \), where \(p_k \) is the probability
that the site is varied among the sequences in
for \(N \) group \(k \in \{ i, j \} \), and where \(p_{ij} \) is the probability that the
site is varied among the sequences in both groups. Thus,
if we let \(e_{ij} \) denote the expected value of \(d_{cov} \) (under
either model), then \(e_{ij} = p_i + p_j - 2p_{ij} \). Consequently,
under an RAS model, we have:

\[e_{ij} = p_i + p_j - 2 \int P(E_i | \lambda) P(E_j | \lambda) \ dF(\lambda) \] \hspace{1cm} (1)

where \(P[E_i | \lambda] \) is the probability that the sequences in
for \(k \) group \(k \) are varied at a site evolving at rate \(\lambda \), and the
integration is performed with respect to the distribution
of rates across sites. Note that if the sites all evolve at
the same rate, \(p_{ij} = p_k \).

For the covarion-style model described in Tuffley
and Steel (1998), lemma 7 of that paper shows that

\[e_{ij} = p_i + p_j - 2p_{ij} - bx_{ij} \exp(-\tau_{ij}) \] \hspace{1cm} (2)

where \(b \) and \(c \) are positive constants (dependent only on
the switching rates between “variable” and “invari-
able” states under the model), \(\tau_{ij} \) is the evolutionary
distance between groups \(i \) and \(j \), and \(x_{ij} = P[E_i | \text{var}] - P[E_i | \text{inv}] \), where \(P[E_i | \text{var}] \) (respectively, \(P[E_i | \text{inv}] \)) is

Key words: covarion, covariotide, nonstationarity, split
decomposition.

Address for correspondence and reprints: Peter J. Lockhart, Insti-
tute of Molecular BioSciences, Massey University, Palmerston North,
New Zealand.

© 2000 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038
the probability that a site is varied for the sequences in group \(k \in \{i, j\} \), given that it is variable (respectively, invariable) at the root vertex of this group in the underlying tree.

In comparing formulae (1) and (2) for \(e_{ij} \) under the two models, we note that equation (1) does not involve the evolutionary distance \(\tau_{ij} \) between the groups. Hence, under an RAS model, we cannot expect \(d_{lcov} \) to extract phylogenetic signal. However, \(e_{ij} \) increases monotonically with \(\tau_{ij} \) for the covarion-style model (eq. 2) and therefore is a (nonlinear) measure of the phylogenetic distance between the groups. Thus, to a first approximation, an expectation is that the \(d_{lcov} \) values should fit a star phylogeny under an RAS model. Under a suitable covarion/covariotide-style model (and with \(\tau_{ij} \) small and monophyletic groups of similar diversity), the expectation is that \(d_{lcov} \) will fit the underlying bifurcating tree. We tested if \(d_{lcov} \) would allow the recovery of tree shapes similar to the model tree when sequences evolved under a non–covarion/covariotide model. Hence, for sequences of finite length (\(c = 100, 200, 300, 400, \) and \(500 \)), we simulated the evolution of five groups of sequences (each containing four sequences) on a bifurcating tree under Jukes-Cantor and RAS models (gamma law distribution of rates with shape parameters 0.5, 1, and 1.5), where the numbers of expected substitutions per site were set to 0.2 for the internal edges and to 0.1 for the external ones. For all combinations of parameters, we generated 100 different data sets. To each such data set we then reconstructed splitsgraphs (Bandelt and Dress 1992; Huson 1998) using (1) \(d_{lcov} \) and (2) traditional distance measures, corrected according to the model used to simulate the data. Unlike the model transformation, \(d_{lcov} \) tended to produce a splitsgraph that did not favor a particular bifurcating tree. Next, we applied \(d_{lcov} \) and split decomposition to five different eubacterial tree of life data sets. For the analyses carried out, sequences were sampled from eubacterial groups (e.g., oxygenic photosynthesis, low G+C gram positives, etc.) so as to cover as much of the genetic diversity of each group as possible yet also maintain a hierarchical structure within each group. These steps were carried out in an attempt to identify diverse sequences showing the most conserved group structure. Sequences whose presence produced unresolved trifurcations between basal lineages within groups were excluded, since these perturbed the treelike properties of both \(d_{lcov} \) and \(d_{cov} \) (i.e., the splitsgraphs became boxlike). Groups that were poorly sampled with shallow divergences were also avoided. The list of taxa used, along with the alignments, are available from http://www.massey.ac.nz/~imbs/Research/MolEvol/Farside/Plants.html.

For each data set, figure 1 shows (1) unweighted bootstrap neighbor-joining trees (obtained using PAUP, version 4; Swofford 1999) recovered using uncorrected (Hamming) distances and (2) split decomposition graphs (obtained using Splitstree, version 3.1; Huson 1997) recovered using \(d_{lcov} \). Since split decomposition makes no assumption that data fit a bifurcating tree, it provides a conservative test for identifying covarion/covariotide support for splits which occur in the neighbor-joining trees.

Comparisons of the neighbor-joining trees and splitsgraphs for protein sequences indicate that the distributions of \(N_3 \) and \(N_4 \) patterns in the different data sets give rise to treelike distances for \(d_{lcov} \) and splits that correspond to those recovered most strongly in the neighbor-joining trees (e.g., the splits between the \(\alpha \) and \(\gamma \) proteobacteria and between the proteobacteria and other-
er groups). These observations are explained if sequences belonging to the different monophyletic groups differ in their distributions of variable sites and if these differences provide support for the treelike structures recovered by tree-building algorithms such as neighbor joining.

Less support is provided by \(N_3 + N_4 \) patterns in the 16S rDNA sequences studied here. With these data, the expected phylogenetic-neighbor-joining tree is recovered only if we include in our dissimilarity measure an additional pattern class \(N_2 \) (i.e., sites at which the character states are different between the two groups and unvaried within each group). The evolution of these patterns is equally well described by covarion and noncovarion models. Thus, with rDNA, while there is evidence for covarionlike patterns of evolution in this molecule (Lockhart et al. 1998), the extent to which these contribute to the inferred phylogenetic relationship between major eubacterial groups is less clear.

It is reassuring that the strongest splits recovered in our protein splitsgraphs reconstructed using \(d_{\text{cov}} \) are found with different eu- bacterial data sets and are also recovered using the nonlinear covarion transform \(d_{\text{cov}} \) (figures not shown), suggesting a common evolutionary history for these different molecules. However, the extent to which asymmetric processes of change may be convergent (and potentially misleading for phylogeny reconstruction) across more widely sampled groups in trees of life is a question that requires further study. Biased amino acid and nucleotide compositions can be convergent (Barbrook, Lockhart, and Howe 1998; Forster and Hickey 1999; Lockhart et al. 1999), and they are known to cause a problem for phylogeny reconstruction when sequences accepting biased substitutions also share similar distributions of varying sites (Lockhart et al. 1998). Although changes in distributions of variable sites may help to “fossilize” phylogenetic history in sequences (Lopez, Forterre, and Philippe 1999), some changes may cause problems for tree building. This can occur if the proportion of variable sites in sequences increases independently in different lineages (e.g., Lockhart et al. 1998; Philippe and Laurent 1998; Germot and Philippe 1999; Steel, Huson, and Lockhart 2000). In this case, the data can be described by the type of inconsistency phenomena discussed by Felsenstein (1978). Such processes have been suggested to mislead outgroup placement with duplicated genes (Lockhart et al. 1996: Philippe and Forterre 1999) and also to mislead the divergence order of eukaryotes (Germot and Philippe 1999; Philippe et al. 2000). These results and those we report here highlight the need for improving our understanding of the biochemical basis for processes of asymmetrical change in sequence evolution. This knowledge would surely help provide confidence in the phylogenetic inference of ancient divergences.

A final point is that we do not propose \(d_{\text{cov}} \) as an additive distance measure for building evolutionary trees. The measure is not expected to extract all the useful information present in the sequences, and, as we have pointed out, observations on diverse data sets suggest that the evolution of some sequences occurs by covarion processes which are nonstationary. This is a phenomenon which is difficult to model.

Acknowledgments

We acknowledge support from the Alexander von Humboldt Foundation, the Deutsche Forschungsgemeinschaft, the New Zealand Marsden Fund, the New Zealand/German co-operation agreement, the Broodbank Fund, and the BBSRC.

LITERATURE CITED

Masami Hasegawa, reviewing editor

Accepted January 18, 2000