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ABSTRACT
Motivation: The large amount of available annotated
Arabidopsis thaliana sequences allows the induction of
splice site prediction models with supervised learning
algorithms (see Haussler (1998) for a review and refer-
ences). These algorithms need information sources or
features from which the models can be computed. For
splice site prediction, the features we consider in this study
are the presence or absence of certain nucleotides in
close proximity to the splice site. Since it is not known how
many and which nucleotides are relevant for splice site
prediction, the set of features is chosen large enough such
that the probability that all relevant information sources
are in the set is very high. Using only those features that
are relevant for constructing a splice site prediction system
might improve the system and might also provide us with
useful biological knowledge. Using fewer features will of
course also improve the prediction speed of the system.
Results: A wrapper-based feature subset selection algo-
rithm using a support vector machine or a naive Bayes
prediction method was evaluated against the traditional
method for selecting features relevant for splice site
prediction. Our results show that this wrapper approach
selects features that improve the performance against the
use of all features and against the use of the features
selected by the traditional method.
Availability: The data and additional interactive graphs on
the selected feature subsets are available at http://www.
psb.rug.ac.be/gps.
Contact: svgro@gengenp.rug.ac.be;
yvdp@gengenp.rug.ac.be

INTRODUCTION
State-of-the-art gene finding systems are integrated
models (Haussler, 1998) in which the task of identifying
regions that encode proteins in a raw DNA-sequence is
divided into a number of subtasks such as the prediction

of promotors, start and stop codons, splice sites and other
signals and content sensors. Systems that handle these
subtasks are then integrated in a more global framework
that combines the predictions of the individual models to
predict the global structure of a gene.

In Arabidopsis thaliana, and practically all other higher
eukaryotic organisms, a gene is not a continuous sequence
in the DNA, but usually consists of a set of coding
fragments known as exons that are separated by non-
coding intervening fragments known as introns.

Most introns follow the GT-AG consensus: they start
with the GT consensus dinucleotide (at the 5’boundary)
called a donor site and end with the AG consensus
dinucleotide (at the 3’boundary) called an acceptor site.
The automatic prediction of these donor and acceptor sites
is a crucial step in the gene finding process known as splice
site prediction.

Two popular methods for the induction of splice site
prediction models are the Weight Matrix Model (WMM)
of Staden (1984) and the more complex Weight Array
Matrix (WAM) of Zhang and Marr (1993). They are
important components in gene prediction systems such as
GeneSplicer (Pertea et al., 2001) and GenScan (Burge and
Karlin, 1997). Inducing a WMM or WAM model implies
the construction of a task-specific data set, which requires
the selection of information sources that are considered to
be relevant for the task at hand. In our splice site prediction
task, these features are typically adjacent nucleotides at
fixed positions relative to the candidate splice site, i.e.
p adjacent positions upstream and q adjacent positions
downstream the candidate.

Optimal values for p and q are obtained by a simple trial
and error algorithm where some values for p and q are
tested and the best values are selected. We explore a more
intelligent search for relevant features, known as wrapper-
based feature subset selection (Kohavi et al., 1997). This
approach uses the predictive performance of an internal
prediction model to decide which feature(s) to eliminate.
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The choice of the prediction model is a parameter of the
wrapper algorithm.

The models we consider in the wrapper algorithm
are the WMM and the Support Vector Machine (SVM)
(Boser et al., 1992; Vapnik, 1995). The latter was selected
because of its implicit feature weighing mechanism, which
can be well exploited by integrating a feature subset
selection method (Mukherjee, 2000; Chapelle et al., 2000;
Brown et al., 1999).

In this study, we combine the SVM with feature subset
selection in a wrapper algorithm. This approach was
applied successfully by Guyon et al. (2000) for predicting
relevant genes in a microarray experiment. We present a
slightly modified version of their feature subset selection
method and apply it to select relevant, not necessarily
adjacent, nucleotide positions for splice site prediction.

Our modification of the method described by Guyon
et al. (2000) allowed us to use the same approach for
the WMM method. The use of probabilistic models for
feature subset selection has been explored by e.g. Langley
et al. (1994), where the WMM is known as the naive
Bayes method (NBM) (Duda and Hart, 1973), which is,
as explained further, the exact same method.

METHODS
The splice site data sets
The Arabidopsis thaliana data set was generated by align-
ing mRNAs (with SIM4; Florea et al. (1998)) obtained
from the public EMBL database (June 5th 2000), with the
BAC-sequences that were used for the Arabidopsis chro-
mosome assembly. For future evaluation purposes, we ex-
cluded all genes that where in AraSet (Pavy et al., 1999).
Redundant genes were excluded by applying algorithm 2
of Hobohm et al. (1992). This method counts the neigh-
bours (two genes are neighbours when they show more
than 80% identity at the nucleotide level) of every gene,
discards the gene with the largest number of neighbours
and repeats this process until no genes with neighbours re-
main. Of the 1812 genes obtained from EMBL (Aubourg
et al., unpublished), 1495 genes were kept after removing
redundant ones. From each gene only these introns con-
firming the GT-AG consensus were used to construct the
set of positive instances. All GT dinucleotides at the start
of these introns are positive donor instances and all AG
dinucleotides at the end of these introns are positive ac-
ceptor instances. The negative donor instances are defined
as, for all genes, all GT dinucleotides that are located be-
tween 100 nucleotide positions upstream of the first donor
and 100 nucleotide positions downstream of the last ac-
ceptor in that gene and that are not donor sites. The nega-
tive acceptor instances are defined as all AG dinucleotides
within the same range and that are not acceptor sites.

Each positive or negative instance is described by 400

binary features where each feature indicates the presence
or absence of one of the 4 nucleotides at a certain
position relative to the consensus, i.e. each instance has
100 features set to 1 and 300 features set to 0. We used p
nucleotide positions upstream and q nucleotide positions
downstream the consensus where p = q = 50 resulting in
4 × (50 + 50) = 400 binary features. A training data set
with balanced class distribution was compiled by random
selection of 1000 positive instances and 1000 negative
instances (GT2000 and AG2000). For the test data set we
extracted all candidate splice sites within the interval as
defined above from 50 genes. This results in a test data set
GT50 with 281 positive and 7505 negative instances and
a test data set AG50 with 281 positive and 7643 negative
instances.

The classification methods
As described in the previous section, our data sets contain
positive and negative instances that are described by
q nucleotide positions downstream and p nucleotide
positions upstream the consensus. Formally, a data set
T contains l instances xi (i = 1, . . . , l) with each xi
labelled as y+ or y− (known as classes), indicating a
positive or negative instance respectively. Each index xi j
( j = 1, . . . , n) in vector xi is a feature Fj , so

xi = (F1, F2, F3, . . . , F4(p+q)). (1)

Two methods for discriminating between positive and
negative instances are described below. They are su-
pervised classification methods that induce a decision
function from the instances in T which can then be used
to classify a new instance z not seen in T .

Support Vector Machines. The Support Vector Machine
(SVM) Boser et al. (1992); Vapnik (1995) is a data-
driven method for solving two-class classification tasks.
The Linear SVM (LSVM) separates the two classes in T
with a hyperplane in the feature space such that:

(a) the ‘largest’ possible fraction of instances of the
same class are on the same side of the hyperplane,
and

(b) the distance of either class from the hyperplane is
maximal.

The prediction of a LSVM for an unseen instance z is 1
(classified as a positive instance) or −1 (classified as a
negative instance), given by the decision function

pred(z) = sgn(w ∗ z + b). (2)

The hyperplane is computed by maximizing a vector of
Lagrange multipliers α in

W (α) =
l∑

i=1

αi − 1

2

l∑
i, j=1

αi α j yi y j K (xi, xj),
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constrained to: 0 ≤ αi ≤ C and
l∑

i=1

αi yi = 0, (3)

where C is a parameter set by the user to regulate the effect
of outliers and noise, i.e. it defines the meaning of the word
‘largest’ in (a).

Function K is a kernel function and maps the features
in T , called the input space, into a feature space defined
by K in which then a linear class separation is performed.
For the LSVM this mapping is a linear mapping:

K (xi, xj) = xi ∗ xj. (4)

The non-linear mappings used in this paper are the
Polynomial-SVM (PSVM):

K (xi, xj) = (xi ∗ xj + 1)d , (5)

and the Gaussian-SVM (GSVM)

K (xi, xj) = e−|xi−xj|2/g2
. (6)

After calculating the αi ’s in (3), the decision function (2)
becomes:

pred(z) = sgn

(
l∑

i=1

αi yi K (xi, z) + b

)
. (7)

For the LSVM this function reduces to (2) with

w =
l∑

i=1

αi xi yi . (8)

In (7) each αi is associated with xi. After optimizing (3)
many αi ’s will become zero and the corresponding xi will
not be used in the decision function (7). All xi for which
the αi is not zero are called the support vectors. Typically
the size of the set of support vectors is much smaller than l.

Naive Bayes. The NBM Duda and Hart (1973) follows
the Bayes optimal decision rule, that tells us to assign a
class yc (c in {+,-}) to an unseen instance z with features
(Fz

1 , Fz
2 , . . . , Fz

n ) that maximizes P(yc|Fz
1 , . . . , Fz

n ),
or the probability of the class yc given the features
(Fz

1 , Fz
2 , . . . , Fz

n ). By using Bayes’ rule we can write
pred(z) = yc as:

yc = argmaxc
P(Fz

1 , . . . , Fz
n |yc) × P(yc)

P(Fz
1 , . . . , Fz

n )
(9)

The naive Bayes method then simplifies the problem
of estimating P(Fz

1 ...Fz
n |yc) by making the arguable

naive independence assumption that the probability of the
features given the class is the product of the probabilities
of the individual features given the class:

P(Fz
1 , . . . , Fz

n |yc) =
∏

1≤ j≤n

P(Fz
j |yc). (10)

Each probability on the right-hand side can now be esti-
mated directly from the instances in T . The probabilities
computed in (9) are the same as the ones obtained by a
WMM. The computation for c = + is same as construct-
ing a WMM on the positive instances (splice sites) and
c = − in (9) is identical to constructing a background
WMM on the negative instances (non-splice sites). Equa-
tion (10) is generalized to the WAM model by incorporat-
ing correlations between adjacent features:

P(Fz
1 , . . . , Fz

n |yc) = P(Fz
1 )

∏
2≤ j≤n

P(Fz
j−1, Fz

j |yc).

(11)

The feature subset selection methods
For selecting an optimal subset of features from
{F1, F2, . . . , Fn}, given the instances in T , one needs
to define what is meant by ‘optimal subset of feature’
(referred to as the selection criterion), and define a search
algorithm to search for this optimal subset of features in
the space of feature subset candidates. Since the number
of feature subset candidates is exponential in n and in
our experiments n is relatively large, the search algorithm
needs to be greedy.

Search Algorithm. A review of different search algo-
rithms can be found in Kohavi et al. (1997). Both the SVM
and NBM are able to perform well in high-dimensional
input spaces, which is confirmed by this study. This allows
us to start the search algorithm with the subset containing
all features. This subset is known to be a good point to
start our search in the space of feature subset candidates.
The candidate space is explored with just one operator
which eliminates a feature from the current subset. This
bottom-up search procedure is called a backward feature
elimination (BFE) procedure Kohavi et al. (1997) and
is greedy enough for our data sets. The BFE procedure
takes as input a data set T with a non-sorted list of
features F . It returns a sorted list R of features in which
the first feature is the least relevant and the last feature
is the most relevant feature for solving the classification
task. The BFE procedure can be written as the following
while-loop:

while (F not empty)
{
model = induce(T )

Fsel = select Feature(T, model)
add Fsel as last element to R
remove Fsel from all xi in T
}

The induce(T ) procedure represents a classifica-
tion method trained on T and returns a model. The
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Table 1. Generalization performance of the classification methods The top header shows the names of the data sets: GT/AG represents a set of donor/acceptor
instances, GT f ss/AG f ss represents a set of donor/acceptor instances with optimal set of features. This set of features differs for each of the prediction
systems. The number of positive and negative instances (#positives/#negatives) in a data set is indicated next to the data set. For each data set the table
presents sensitivity (Se), specificity (Sp) and F-measure (F)

Method GT50 (281/7505) AG50 (281/7643) GT50 f ss (281/7505) AG50 f ss (281/7643)
Se Sp F Se Sp F Se Sp F Se Sp F

LSVM 96.1 32.8 48.9 95.0 27.6 42.8 97.9 34.6 51.1 93.9 28.5 43.7
PSVM 98.2 34 50.5 96.1 28.6 44.1 97.2 35.5 52 95.7 29.5 45.1
GSVM 97.9 32.3 48.6 96.8 25.9 40.9 98.6 33.3 49.8 96.4 27.6 42.9
NBM 96.8 27.1 42.3 94.3 24.7 39.1 97.5 30.4 46.3 94.7 25.9 40.7

WMM 96.8 27.1 42.3 94.3 24.7 39.1 96.8 27.8 43.2 95.7 25.1 39.8
WAM 95 27.2 42.3 97.1 29.8 45.6 95.7 28.9 44.4 96.1 30.1 45.8

select Feature(T, model) procedure selects the feature
that optimizes the selection criterion based on the model
induced in each iteration of the BFE procedure.

Selection Criterion. A simple criterion consists in select-
ing that feature that decreases the predictive performance
of the model the most. For all features Fi still in F we
evaluate the generalization performance of the model after
removing Fi from all instances in T . We choose to approx-
imate this generalization performance by the accuracy on
T while setting Fi for all instances in T to its mean value.
Using cross-validation as an approximation would make
the BFE impractical for the real world data sets in this
paper.

For the SVM select Feature(T, model = α) becomes:

argmaxFk

(
l∑

j=1

y j × (

l∑
i=1

αi yi K (xi
k, xj

k) + b)

)
, (12)

where xi
k is instance xi with feature Fk set to its mean

value. In (12) the αi ’s are kept constant for all Fk , i.e. no
retraining is done when considering to eliminate a feature
Fk , but instead the previous values for the αi ’s are used,
reducing the computation time of BFE drastically.

For the NBM, Select Feature(T, model) becomes:

argmaxFk
(

l∑
j=1

y j × yk
j ), (13)

with yk
j defined as:

argmaxc

(
P(F j

1 , . . . , F j
k−1, F j

k+1, . . . , F j
n |yc) × P(yc)

P(F j
1 , . . . , F j

k−1, F j
k+1, . . . , F j

n )

)
.

(14)
We will refer to selection criterion (12) as BFESVM and

to selection criterion (13) as BFENBM.

RESULTS AND DISCUSSION
Model induction
The parameters that need to be set by the user were
optimized on the GT2000 and AG2000 data sets using
10-fold cross-validation (10CV) Weiss and Kulikowski
(1991) which divides the data set into ten partitions, uses
each partition in turn as test set and the other nine as
training set, and computes evaluation criteria by averaging
the results for the ten test sets. The partitions we used
were equally sized, contained a balanced class distribution
and were the same for each method. Parameter values that
resulted in the best predictive performance were selected.
In case of the SVM the number of support vectors in
the model was used as a second criterion for parameter
selection in case two models would have nearly the same
predictive performance.

Columns GT50 and AG50 of Table 1 show the predictive
performance on our test data sets, after training on resp.
GT2000 and AG2000. In these first two columns, all
algorithms were given all of the 400 binary features.
Predictive performance is measured in terms of the
sensitivity (Se), defined as the proportion of positives that
are correctly predicted, and the specificity (Sp), defined
as the proportion of predicted positives that are correct.
The F-measure (F) is used to combine sensitivity and
specificity in an harmonic mean:

F = 2 × Se × Sp

Se + Sp
. (15)

Although the aim of this study is not to improve splice
site prediction with the SVM method, we do observe
a promising improvement in the donor site prediction
accuracy.

Feature subset selection
Initially, T in both BFE methods is the {GT, AG}2000
data set with all features F . In each BFE iteration one
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Fig. 1. Feature Subset Selection for donor prediction. In each
iteration of BFE a feature is eliminated and the resulting model is
evaluated by computing the F-measures (top), sensitivity (middle)
and specificity (bottom) ratios on the GT10000 data set.

feature is removed and the resulting T is evaluated on
the {GT, AG}50 data set. Figures 1–4 show the evolution
of the predictive performance when eliminating features
in a graph where the x-axis is the number of features
eliminated so far and the y-axis shows the F-measure and
the sensitivity and specificity ratios.

The SVM is not able to compute a predictive model
with few features. Computing a unique threshold b (2)
becomes impossible which leads to the strange behavior
of the BFESVM methods in the very last iterations. What
happens is that all instances are either all predicted as
positives, or all predicted as negatives, or the return value
of the decision function (7) is always zero, which means
no prediction at all. The NBM method does not suffer
from this limitation and can induce a model with just one
feature. For instance, specificity and sensitivity ratios for
NBM trained on GT2000 with only the presence or absence
of nucleotide G at one position upstream the GT consensus
are 0.815 and 0.123 respectively. This feature was also
selected as most relevant by all three SVM’s.

Two conclusions can be drawn from Figures 3 and 4:
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Fig. 2. Feature Subset Selection for acceptor prediction. In each
iteration of BFE a feature is eliminated and the resulting model is
evaluated by computing the F-measures (top), sensitivity (middle)
and specificity (bottom) ratios on the AG10000 data set.

(a) prediction performance only decreases significantly in
the ten last BFE iterations, and (b) prediction performance
does increase gradually when adding more features to this
ten-features subset. These ten last features in (a) are all
very close to the splice site (see also Figures 5–6 described
below). It is known that the presence or absence of certain
nucleotides at fixed positions close to the splice site (3
to 4 positions upstream and downstream) are relevant for
Arabidopsis splice site prediction. We see that both SVM
and NBM extract this knowledge as most relevant.

Observation (b) can be explained as an attempt to extract
position invariant information or features. From Lim and
Burge (2001) we learned that the presence of certain
pentamers (such as ‘TTTTG’) in the intron are important
discriminating information sources for Arabidopsis splice
site prediction. The position of these words relative to
the splice site is of less importance, which makes them
position invariant features. A classification method that
tries to extract such a position invariant feature needs
many position dependent features to do so. The more
position dependent features are used, the larger the interval
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Fig. 3. Last fifty BFE iterations for donor prediction. In each
iteration of BFE a feature is eliminated and the resulting model is
evaluated by computing the F-measures (top), sensitivity (middle)
and specificity (bottom) ratios on the GT10000 data set.

in which the position invariant feature can be found. We
assume that this explains the many adjacent nucleotides
T and G in the intron part of the splice site for the 100-
features subset (Figures 5–6). It would also explain the
gradual increase in predictive performance: the interval in
which the position invariant feature can be found becomes
at most one position wider when adding one ‘relevant’
feature to the data set.

Figures 5–6 show snapshots of the BFE feature subset
selection process for PSVM (an interactive web page
containing all subsets for all four methods will be available
at time of publication at http://www.psb.rug.ac.be/gps).
Different subsets are shown graphically, together with
their performance on {GT, AG}50.

Comparing the feature subsets selected by the four
methods, it is difficult to find clear similarities. For an
optimal subset containing 10 features, 6 features are
selected by all four methods on GT2000. For a subset of
5 features, 4 features where selected by all four methods.
On AG2000, the difference between the 10 most relevant
features selected by PSVM and the 10 most relevant
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Fig. 4. Last fifty BFE iterations for acceptor prediction. In each
iteration of BFE a feature is eliminated and the resulting model is
evaluated by computing the F-measures (top), sensitivity (middle)
and specificity (bottom) ratios on the AG10000 data set.

feature selected by the other three methods is much bigger.
Only 3 features where selected by all four methods, but
7 features can be found in the set of 10 most relevant
features of the three other methods. The fact that the
other features differ might be due to the presence of
redundant features. Such a feature can be replaced by
another one that is correlated with the replaced feature, i.e.
the predictive performance of the system does not change
when substituting redundant features.

Columns GT f ss and AG f ss of Table 1 show the
predictive performance on our test data sets, after training
on resp. GT2000 and AG2000, when using the ‘optimal’
set of features for each of the four methods used in BFE.
The ‘optimal’ set is defined as the set of features with the
best prediction performance, not taking into account the
number of features. For the WMM and WAM methods,
we used the traditional search for relevant features: all
possible combinations of q and p were evaluated and
the ‘optimal’ values were selected. This explains the
difference in performance between NBM and WMM in
these last two columns.
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Fig. 5. Snapshots from BFEPSVM trained on GT2000 and tested on GT50. From bottom to top features are eliminated and F-measure (Fm),
sensitivity (Se) end specificity (Sp) ratios are given for PSVM models trained with the features in the box above the ratios.

Removing features with the BFE method clearly
improves the prediction performance of all four methods
on both GT and AG. Also, compared to the traditional
method applied to WMM, the improvement is signifi-

cantly higher. The F-measure for NBM on GT improves
from 42.3 to 46.3, while the WMM improves from 42.3 to
43.2. A comparable observation can be made for the AG
data set.
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Fig. 6. Snapshots from BFEPSVM trained on AG2000 and tested on AG50. From bottom to top features are eliminated and F-measure (Fm),
sensitivity (Se) end specificity (Sp) ratios are given for PSVM models trained with the features in the box above the ratios.

CONCLUSIONS
We have described how to apply a more advanced BFE
search for relevant features for the splice site prediction
task and have shown how prediction performance benefits
from BFE compared to the traditional approach.

Looking at the selected feature subsets, we conclude

that the only position dependent nucleotides that are
relevant for splice site prediction are those that are in close
proximity to the splice site. Both the SVM and the NBM
try to extract and use position invariant features such as
e.g. the pentamers discussed in Lim and Burge (2001) by
using a set of position dependent features.

S82



Feature subset selection for splice site prediction

A classification method that uses position dependent
features should use only those nucleotides that are close
to the splice site. The gain in predictive performance that
is observed when using more position dependent features
should be compensated by adding position invariant
features such as covariation, oligomers and secondary
structure.
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