Cristina Osuna

Title: 
PhD student
Project: 
Genome analysis of the diatom S. robusta

Shared with L. De Veylder lab

Publications

  1. Vercruysse, J., Van Bel, M., Osuna, C., Kulkarni, S. R., Van den Storme, V., Nelissen, H., … Vandepoele, K. (2020). Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. PLANT BIOTECHNOLOGY JOURNAL, 18(2), 553–567.
    Leaf growth is a complex trait for which many similarities exist in different plant species, suggesting functional conservation of the underlying pathways. However, a global view of orthologous genes involved in leaf growth showing conserved expression in dicots and monocots is currently missing. Here, we present a genome-wide comparative transcriptome analysis between Arabidopsis and maize, identifying conserved biological processes and gene functions active during leaf growth. Despite the orthology complexity between these distantly related plants, 926 orthologous gene groups including 2829 Arabidopsis and 2974 maize genes with similar expression during leaf growth were found, indicating conservation of the underlying molecular networks. We found 65% of these genes to be involved in one-to-one orthology, whereas only 28.7% of the groups with divergent expression had one-to-one orthology. Within the pool of genes with conserved expression, 19 transcription factor families were identified, demonstrating expression conservation of regulators active during leaf growth. Additionally, 25 Arabidopsis and 25 maize putative targets of the TCP transcription factors with conserved expression were determined based on the presence of enriched transcription factor binding sites. Based on large-scale phenotypic data, we observed that genes with conserved expression have a higher probability to be involved in leaf growth and that leaf-related phenotypes are more frequently present for genes having orthologues between dicots and monocots than clade-specific genes. This study shows the power of integrating transcriptomic with orthology data to identify or select candidates for functional studies during leaf development in flowering plants.
  2. Stock genannt Schroer, F., Bilcke, G., De Decker, S., Osuna, C., Van den Berge, K., Vancaester, E., … Vyverman, W. (2020). Distinctive growth and transcriptional changes of the diatom Seminavis robusta in response to quorum sensing related compounds. FRONTIERS IN MICROBIOLOGY, 11. https://doi.org/10.3389/fmicb.2020.01240
    In aquatic habitats, diatoms are frequently found in association with Proteobacteria, many members of which employ cell-to-cell communication via N-acyl homoserine lactones (AHLs). It has been suggested that diatoms could distinguish between beneficial and algicidal bacteria in their surroundings by sensing AHLs. Although some microalgae can interfere with AHL signaling, e.g., by releasing AHL mimics or degrading them, molecular responses to AHLs in microalgae are still unclear. Therefore, we tested the effects of short-chained AHLs, i.e., N-hexanoyl homoserine lactone (C6-HSL), N-3-hydroxyhexanoyl homoserine lactone (OH-C6-HSL), and N-3-oxohexanoyl homoserine lactone (oxo-C6-HSL) and long-chained AHLs, i.e., N-tetradecanoyl homoserine lactone (C14-HSL), N-3-hydroxytetradecanoyl homoserine lactone (OH-C14-HSL), and N-3-oxotetradecanoyl homoserine lactone (oxo-C14-HSL), on growth of the benthic diatom Seminavis robusta. All tested short-chained AHLs did not affect diatom growth, while long-chained AHLs promoted (C14-HSL) or inhibited (OH-C14-HSL and oxo-C14-HSL) growth. To investigate the physiological effects of these long-chained AHLs in more detail, an RNA-seq experiment was performed during which S. robusta was treated with the growth-promoting C14-HSL and the growth-inhibiting oxo-C14-HSL. One tetramic acid was also tested (TA14), a structural rearrangement product of oxo-C14-HSL, which also induced growth inhibition in S. robusta. After 3 days of treatment, analysis revealed that 3,410 genes were differentially expressed in response to at least one of the compounds. In the treatment with the growth-promoting C14-HSL many genes involved in intracellular signaling were upregulated. On the other hand, exposure to growth-inhibiting oxo-C14-HSL and TA14 triggered a switch in lipid metabolism towards increased fatty acid degradation. In addition, oxo-C14-HSL led to downregulation of cell cycle genes, which is in agreement with the stagnation of cell growth in this treatment. Combined, our results indicate that bacterial signaling molecules with high structural similarity induce contrasting physiological responses in S. robusta.
  3. Blommaert, L., Vancaester, E., Huysman, M., Osuna, C., D’hondt, S., Lavaud, J., … Sabbe, K. (2020). Light regulation of LHCX genes in the benthic diatom Seminavis robusta. FRONTIERS IN MARINE SCIENCE, 7. https://doi.org/10.3389/fmars.2020.00192
    Intertidal benthic diatoms experience a highly variable light regime, which especially challenges these organisms to cope with excess light energy during low tide. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is one of the most rapid mechanisms diatoms possess to dissipate excess energy. Its capacity is mainly defined by the xanthophyll cycle (XC) and Light-Harvesting Complex X (LHCX) proteins. Whereas the XC and its relation to NPQ have been relatively well-studied in both planktonic and benthic diatoms, our current knowledge about LHCX proteins and their potential involvement in NPQ regulation is largely restricted to planktonic diatoms. While recent studies using immuno-blotting have revealed the presence of light regulated LHCX proteins in benthic diatom communities and isolates, nothing is as yet known about the diversity, identity and transcriptional regulation or function of these proteins. We identified LHCX genes in the draft genome of the model benthic diatom Seminavis robusta and followed their transcriptional regulation during a day/night cycle and during exposure to high light conditions. The S. robusta genome contains 17 LHCX sequences, which is much more than in the sequenced planktonic model diatoms (4-5), but similar to the number of LHCX genes in the sea ice associated diatom Fragilariopsis cylindrus. LHCX diversification in both species, however, appears to have occurred independently. Interestingly, the S. robusta genome contains LHCX genes that are related to the LHCX6 of the model centric diatom Thalassiosira pseudonana, which are lacking in the well-studied pennate model diatom Phaeodactylum tricornutum. All investigated LHCX genes, with exception of SrLHCX6, were upregulated during the daily dark-light transition. Exposure to 2,000 timol photons m(-2) s(-1), furthermore, increased transcription of all investigated LHCX genes. Our data suggest that the diversification and involvement of several light regulated LHCX genes in the photophysiology of S. robusta may represent an adaptation to the complex and highly variable light environment this benthic diatom species can be exposed to.
  4. Cirri, E., De Decker, S., Bilcke, G., Werner, M., Osuna, C., De Veylder, L., Vandepoele, K., et al. (2019). Associated bacteria affect sexual reproduction by altering gene expression and metabolic processes in a biofilm inhabiting diatom. FRONTIERS IN MICROBIOLOGY, 10.
    Diatoms are unicellular algae with a fundamental role in global biogeochemical cycles as major primary producers at the base of aquatic food webs. In recent years, chemical communication between diatoms and associated bacteria has emerged as a key factor in diatom ecology, spurred by conceptual and technological advancements to study the mechanisms underlying these interactions. Here, we use a combination of physiological, transcriptomic, and metabolomic approaches to study the influence of naturally coexisting bacteria, Maribacter sp. and Roseovarius sp., on the sexual reproduction of the biofilm inhabiting marine pennate diatom Seminavis robusta. While Maribacter sp. severely reduces the reproductive success of S. robusta cultures, Roseovarius sp. slightly enhances it. Contrary to our expectation, we demonstrate that the effect of the bacterial exudates is not caused by altered cell-cycle regulation prior to the switch to meiosis. Instead, Maribacter sp. exudates cause a reduced production of diproline, the sexual attraction pheromone of S. robusta. Transcriptomic analyses show that this is likely an indirect consequence of altered intracellular metabolic fluxes in the diatom, especially those related to amino acid biosynthesis, oxidative stress response, and biosynthesis of defense molecules. This study provides the first insights into the influence of bacteria on diatom sexual reproduction and adds a new dimension to the complexity of a still understudied phenomenon in natural diatom populations.
  5. Osuna, C., Paytuvi-Gallart, A., Di Donato, A., Sundesha, V., Andolfo, G., Aiese Cigliano, R., … Ercolano, M. R. (2017). PRGdb 3.0 : a comprehensive platform for prediction and analysis of plant disease resistance genes. NUCLEIC ACIDS RESEARCH, 46(D1), D1197–D1201.
    The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants.