Dries Vaneechoutte

PhD student
Cross-species inference of gene functions in plants

Funding: IWT


  1. Vaneechoutte, D., & Vandepoele, K. (2019). Curse : building expression atlases and co-expression networks from public RNA-Seq data. BIOINFORMATICS.
    Public RNA-Sequencing (RNA-Seq) datasets are a valuable resource for transcriptome analyses, but their accessibility is hindered by the imperfect quality and presentation of their metadata and by the complexity of processing raw sequencing data. The Curse suite was created to alleviate these problems. It consists of an online curation tool named Curse to efficiently build compendia of experiments hosted on the Sequence Read Archive, and a lightweight pipeline named Prose to download and process the RNA-Seq data into expression atlases and co-expression networks. Curse networks showed improved linking of functionally related genes compared to the state-of-the-art.; Availability and implementation: Curse, Prose, and their manuals are available at http://bioinformatics.psb.ugent.be/webtools/Curse/. Prose was implemented in Java.; Supplementary information: Supplementary data are available at Bioinformatics online.
  2. Kulkarni, S. R., Vaneechoutte, D., Van de Velde, J., & Vandepoele, K. (2018). TF2Network : predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. NUCLEIC ACIDS RESEARCH, 46(6).
    A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidop-sis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75-92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response.
  3. Lopes dos Santos Santiago, G., Brusselle, G., Dauwe, K., Deschaght, P., Verhofstede, C., Vaneechoutte, D., Deschepper, E., et al. (2017). Influence of chronic azithromycin treatment on the composition of the oropharyngeal microbial community in patients with severe asthma. BMC MICROBIOLOGY, 17.
    Background: This study of the oropharyngeal microbiome complements the previously published AZIthromycin in Severe ASThma (AZISAST) clinical trial, where the use of azithromycin was assessed in subjects with exacerbationprone severe asthma. Here, we determined the composition of the oropharyngeal microbial community by means of deep sequencing of the amplified 16S rRNA gene in oropharyngeal swabs from patients with exacerbationprone severe asthma, at baseline and during and after 6 months treatment with azithromycin or placebo. Results: A total of 1429 OTUs were observed, of which only 59 were represented by more than 0.02% of the reads. Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria were the most abundant phyla and Streptococcus and Prevotella were the most abundant genera in all the samples. Thirteen species only accounted for two thirds of the reads and two species only, i.e. Prevotella melaninogenica and Streptococcus mitis/pneumoniae, accounted for one fourth of the reads. We found that the overall composition of the oropharyngeal microbiome in patients with severe asthma is comparable to that of the healthy population, confirming the results of previous studies. Long term treatment (6 months) with azithromycin increased the species Streptococcus salivarius approximately 5-fold and decreased the species Leptotrichia wadei approximately 5-fold. This was confirmed by Boruta feature selection, which also indicated a significant decrease of L. buccalis/L. hofstadtii and of Fusobacterium nucleatum. Four of the 8 treated patients regained their initial microbial composition within one month after cessation of treatment. Conclusions: Despite large diversity of the oropharyngeal microbiome, only a few species predominate. We confirm the absence of significant differences between the oropharyngeal microbiomes of people with and without severe asthma. Possibly, long term azithromycin treatment may have long term effects on the composition of the oropharygeal microbiome in half of the patients.
  4. Zhang, Xinhua, Ivanova, A., Vandepoele, K., Radomiljac, J., Van de Velde, J., Berkowitz, O., Willems, P., et al. (2017). The transcription factor MYB29 is a regulator of ALTERNATIVE OXIDASE1a. PLANT PHYSIOLOGY, 173(3), 1824–1843.
    Plants sense and integrate a variety of signals from the environment through different interacting signal transduction pathways that involve hormones and signaling molecules. Using ALTERNATIVE OXIDASE1a (AOX1a) gene expression as a model system of retrograde or stress signaling between mitochondria and the nucleus, MYB DOMAIN PROTEIN29 (MYB29) was identified as a negative regulator (regulator of alternative oxidase1a 7 [rao7] mutant) in a genetic screen of Arabidopsis (Arabidopsis thaliana). rao7/myb29 mutants have increased levels of AOX1a transcript and protein compared to wild type after induction with antimycin A. A variety of genes previously associated with the mitochondrial stress response also display enhanced transcript abundance, indicating that RAO7/MYB29 negatively regulates mitochondrial stress responses in general. Meta-analysis of hormone-responsive marker genes and identification of downstream transcription factor networks revealed that MYB29 functions in the complex interplay of ethylene, jasmonic acid, salicylic acid, and reactive oxygen species signaling by regulating the expression of various ETHYLENE RESPONSE FACTOR and WRKY transcription factors. Despite an enhanced induction of mitochondrial stress response genes, rao7/myb29 mutants displayed an increased sensitivity to combined moderate light and drought stress. These results uncover interactions between mitochondrial retrograde signaling and the regulation of glucosinolate biosynthesis, both regulated by RAO7/MYB29. This common regulator can explain why perturbation of the mitochondrial function leads to transcriptomic responses overlapping with responses to biotic stress.
  5. Vancoillie, L., Hebberecht, L., Dauwe, K., Demecheleer, E., Dinakis, S., Vaneechoutte, D., Mortier, V., et al. (2017). Longitudinal sequencing of HIV-1 infected patients with low-level viremia for years while on ART shows no indications for genetic evolution of the virus. VIROLOGY, 510, 185–193.
    HIV-infected patients on antiretroviral therapy (ART) may present low-level viremia (LLV) above the detection level of current viral load assays. In many cases LLV is persistent but does not result in overt treatment failure or selection of drug resistant viral variants. To elucidate whether LLV reflects active virus replication, we extensively sequenced pol and env genes of the viral populations present before and during LLV in 18 patients and searched for indications of genetic evolution. Maximum likelihood phylogenetic trees were inspected for temporal structure both visually and by linear regression analysis of root-to-tip and pairwise distances. Viral coreceptor tropism was assessed at different time points before and during LLV. In none of the patients consistent indications for genetic evolution were found over a median period of 4.8 years of LLV. As such these findings could not provide evidence that active virus replication is the main driver of LLV.
  6. Vaneechoutte, D., Estrada, A. R., Lin, Y.-C., Loraine, A. E., & Vandepoele, K. (2017). Genome-wide characterization of differential transcript usage in Arabidopsis thaliana. PLANT JOURNAL, 92(6), 1218–1231.
    Alternative splicing and the usage of alternate transcription start- or stop sites allows a single gene to produce multiple transcript isoforms. Most plant genes express certain isoforms at a significantly higher level than others, but under specific conditions this expression dominance can change, resulting in a different set of dominant isoforms. These events of differential transcript usage (DTU) have been observed for thousands of Arabidopsis thaliana, Zea mays and Vitis vinifera genes, and have been linked to development and stress response. However, neither the characteristics of these genes, nor the implications of DTU on their protein coding sequences or functions, are currently well understood. Here we present a dataset of isoform dominance and DTU for all genes in the AtRTD2 reference transcriptome based on a protocol that was benchmarked on simulated data and validated through comparison with a published reverse transciptase-polymerase chain reaction panel. We report DTU events for 8148 genes across 206 public RNA-Seq samples, and find that protein sequences are affected in 22% of the cases. The observed DTU events show high consistency across replicates, and reveal reproducible patterns in response to treatment and development. We also demonstrate that genes with different evolutionary ages, expression breadths and functions show large differences in the frequency at which they undergo DTU, and in the effect that these events have on their protein sequences. Finally, we showcase how the generated dataset can be used to explore DTU events for genes of interest or to find genes with specific DTU in samples of interest.
  7. Van de Velde, Jan, Van Bel, M., Vaneechoutte, D., & Vandepoele, K. (2016). A collection of conserved noncoding sequences to study gene regulation in flowering plants. PLANT PHYSIOLOGY, 171(4), 2586–2598.
    Transcription factors (TFs) regulate gene expression by binding cis-regulatory elements, of which the identification remains an ongoing challenge owing to the prevalence of large numbers of nonfunctional TF binding sites. Powerful comparative genomics methods, such as phylogenetic footprinting, can be used for the detection of conserved noncoding sequences (CNSs), which are functionally constrained and can greatly help in reducing the number of false-positive elements. In this study, we applied a phylogenetic footprinting approach for the identification of CNSs in 10 dicot plants, yielding 1,032,291 CNSs associated with 243,187 genes. To annotate CNSs with TF binding sites, we made use of binding site information for 642 TFs originating from 35 TF families in Arabidopsis (Arabidopsis thaliana). In three species, the identified CNSs were evaluated using TF chromatin immunoprecipitation sequencing data, resulting in significant overlap for the majority of data sets. To identify ultraconserved CNSs, we included genomes of additional plant families and identified 715 binding sites for 501 genes conserved in dicots, monocots, mosses, and green algae. Additionally, we found that genes that are part of conserved mini-regulons have a higher coherence in their expression profile than other divergent gene pairs. All identified CNSs were integrated in the PLAZA 3.0 Dicots comparative genomics platform (http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/) together with new functionalities facilitating the exploration of conserved cis-regulatory elements and their associated genes. The availability of this data set in a user-friendly platform enables the exploration of functional noncoding DNA to study gene regulation in a variety of plant species, including crops.
  8. Proost, Sebastian, Van Bel, M., Vaneechoutte, D., Van de Peer, Y., Inzé, D., Mueller-Roeber, B., & Vandepoele, K. (2015). PLAZA 3.0 : an access point for plant comparative genomics. NUCLEIC ACIDS RESEARCH, 43(D1), D974–D981.
    Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms.
  9. Vargas, L., Santa Brigida, A. B., Mota Filho, J. P., de Carvalho, T. G., Rojas, C. A., Vaneechoutte, D., Van Bel, M., et al. (2014). Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLOS ONE, 9(12).
    Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant.